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1.0 Introduction

This document presents the methods, supporting data, and results of calculations done in support
of Culebra head and hydraulic gradient network monitoring design. Three different approaches
to monitoring network design are examined and results for the Culebra are obtained for each.
These results include optimal locations for additional monitoring wells and identification of
wells in the current monitoring network that could be removed with minimal effect on meeting
the monitoring objectives. The three different sets of results are then combined into a final set of
maps indicating areas for the installation ofnew monitoring wells. Additionally, several wells in
the existing network could be removed with minimal effect on the ability of the monitoring
network to predict heads at unmonitored locations and to detect changes in the hydraulic
gradient.

1.1 Background
The Waste Isolation Pilot Plant (WIPP) is located in southeastern New Mexico and has been
developed by the U.S. Department of Energy (DOE) for the geologic (deep underground)
disposal oftransuranic (TRU) waste. Containment ofTRU waste at the WIPP is regulated by the
U.S. Environmental Protection Agency (EPA) according to the regulations set forth at Title 40 of
the Code ofFederal Regulations, Parts 191 and 194. The DOE demonstrates compliance with
the containment requirements in the regulations by means of a performance assessment (PA),
which estimates releases from the repository for the regulatory period of 10,000 years after
closure.

In October 1996, DOE submitted the Compliance Certification Application (CCA; U.S. DOE,
1996) to the EPA, which included the results of extensive PA analyses and modeling. After an
extensive review, in May 1998 the EPA certified that the WIPP met the criteria in the regulations
and was approved for disposal oftransuranic waste. The first shipment of waste arrived at the
site in March 1999.

The results of the PA conducted for the CCA were subsequently summarized in a Sandia
National Laboratories (SNL) report (Helton et aI., 1998) and in refereed journal articles (see
Helton and Marietta, 2000).

Groundwater-monitoring and modeling activities at the WIPP are an integral part ofthe DOE's
broader requirements to demonstrate that WIPP operations are performed in a manner that
ensures protection of the environment, the health and safety ofworkers and the public, proper
characterization of the disposal system, and compliance of the WIPP with applicable regulations.
Continued compliance with regulations must be demonstrated every five years during the
operational phase of the WIPP. The monitoring requirements apply not only for the current
operational phase (-35 years), but extend through the post-closure phase ofthe facility to meet
applicable regulations. Because of these long-term requirements, DOE's Carlsbad Field Office
(CBFO) has developed a Strategic Plan For Groundwater Monitoring at the Waste Isolation
Pilot Plant (DOE, 2003) that describes: relevant regulatory (EPA and NMED) drivers; the
current groundwater-monitoring network and how it has evolved over time; current groundwater
program elements; strategies for maintaining compliance; methods for implementing the
strategies; and roles and responsibilities of monitoring program participants.
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1.2 Purpose
The purpose of these calculations is to identify optimal locations for new Culebra monitoring
wells. Additionally, it is necessary to examine the current monitoring network to determine if
redundant information with respect to the monitoring goals is being collected. If so, it may be
possible to remove some of the existing wells from the network without compromising the
ability of the network to predict heads at unmonitored locations or to detect changes in the
magnitude and direction of the hydraulic gradient. The calculations herein will be focused on
meeting the goals of:

I. The monitoring network must allow the determination of the direction and
rate of groundwater flow across the WIPP site. This is a NMED and EPA
requirement (NMAC, 2000 incorporating 40 CFR Part 194 §264.98(e)
EPA, 1996);

2. The monitoring network must provide data needed to infer causes of
changes in water levels that might be observed. This is an EPA
requirement, 40 CFR Part 194, Subpart C §194.42 (EPA, 1996); and

3. The monitoring network must provide spatially distributed head data
adequate to allow both defensible boundary conditions to be inferred for
Culebra flow models and defensible calibration of those models (PA
requirements).

The degree to which these objectives can be reduced to quantitative measures is evaluated as part
of the work reported in this Analysis Report.

The optimized and minimized monitoring network will be created using available information
including existing wells and up to date understanding ofthe hydrology of the Culebra. The
optimization and minimization process must take the following factors into consideration:

1. Optimize around (i.e., preserve) existing locations of fiberglass-cased wells

2. Preserve existing locations of steel-cased wells where feasible to minimize pad/road
construction, permitting, and survey costs

3. Identify existing well locations that are not needed

4. Known T variations and geologic boundaries

5. Where feasible, locate new wells in areas where questions have arisen concerning the
geologic and/or hydrologic conceptual models

6. Where feasible, locate new wells in areas of high groundwater flow and/or particle
travel time model sensitivity

1.3 Outline
This report documents the data, methods, and summary results of the work completed under
Analysis Plan III (Beauheim and McKenna, 2003). The sections of this report and a brief
description ofeach subsection are:

1.0 Introduction
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1.1 Background: A brief background ofthe WIPP certification and recertification process
1.2 Purpose: A concise statement ofthe purpose of this work
1.3 Outline
1.4 Calculation Domain: Definition of the spatial domain of the model and changes from the

CRAmode1
1.5 Observed Data: A description of the measured head and drawdown data used for the

calibration of the base transmissivity fields and the references from which these
measurements were obtained

2.0 Geostatistical Variance Reduction
2.1 Trend Fitting and Residual Calculations: A planar trend is fit to the 2000 and 2003 head

data sets and residuals between the trend and the measurements are calculated
2.2 Variogram Calculation and Modeling: Variograms of the residuals are calculated and

modeled
2.3 Kriging: The residuals are kriged to get estimates of residuals and estimation variance at

all locations without wells
2.4 Estimation Variance Calculations: The average estimation variance in the model domain

and in the WIPP site is calculated
2.5 Calculation Details: Details of the calculations, directory names and file names and

locations are provided for the work done in this chapter

3.0 Local Gradient Estimation
3.1 Background: Literature review ofprevious work on local gradient estimation
3.2 Estimation of the Gradient: The equations for three-point estimation
3.3 Local Gradient Estimator Error Analysis: Summary of numerical analysis of the effects

of measurement error on local gradient estimation
3.3.1 Relative Measurement Error: The definition of the relative head measurement error
3.3.2 Estimator Shape and Gradient Orientation: Summary of numerical experiments

conducted to determine the effect of estimator shape and orientation on the accuracy of
the estimates

3.3.3 Choosing Acceptable Three-Point Estimators: Summary of the rules developed for
necessary estimator shape and relative head measurement error to achieve accurate
estimates

3.4 Application I: Monitoring Temporal Changes: Use oflocal gradient estimators to
identify changes in the Culebra gradient from August 2000 to August 2003

3.5 Application 2: Long-Term Monitoring Network Design: Use oflocal gradient estimators
to optimize existing well removal and addition of wells to the network.

3.5.1 Removal of Existing Monitoring Wells
3.5.2 Addition ofNew Monitoring Wells
3.6 Local Gradient Estimation Summary
3.7 Assumption of Homogeneity: Discussion ofnumerical calculations done to examine the

effects of assuming a homogeneous aquifer within each three-point estimator
3.8 Calculation Details: Details of the calculations, directory names and file names and

locations are provided for the work done in this chapter

4.0 Spatial Sensitivity-Based Monitoring
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4.1 Background: Literature review on other efforts
4.2 Derivative-Based Sensitivity Coefficients: Definition ofthe more traditional derivative­

based sensitivity coefficients
4.3 Sampling-Based Sensitivity Coefficients: Definition of sampling-based sensitivity

coefficients
4.4 Application to Culebra Calculations: Comparison ofderivative and sampling-based

sensitivity coefficients
4.5 Results: Sensitivity of travel time to WlPP boundary with respect to head and

transmissivity
4.6 Summary
4.7 Calculation Details: Details ofthe calculations, directory names and file names and

locations are provided for the work done in this chapter

5.0 Combining Monitoring Approaches
5.1 Results: final maps of the sum ofthe rescaled maps of the different approaches
5.2 Summary
5.3 Calculation Details: Details of the calculations, directory names and file names and

locations are provided for the work done in this chapter

6.0 Conclusions

7.0 References: Other work cited in this report

1.4 Calculation Domain
The spatial domain used for the different calculations in support of monitoring network design is
the same as the model domain used in the stochastic inverse calibration of the Culebra T fields to
steady-state and transient data (McKenna and Hart, 2003) for the CRA (DOE, 2004). This
model domain is oriented with the compass directions and is 30.6 km in the north-south direction
and 22.3 km in the east-west direction. The comers of the WlPP model domain are given in
Table I. These coordinates define the center of IOOx 100_m2 model cells at the four comers of
the model domain. All monitoring calculations that produce results on a spatial grid employ the
same grid as used for the stochastic inverse calibrations.

Table 1. The UTM (NAD27) coordinates of the comers ofthe numerical model domain.

Domain Corner X Coordinate (meters) Y Coordinate (meters)
Northeast 624,000 3,597,100
Northwest 601,700 3,597,100
Southeast 624,000 3,566,500
Southwest 601,700 3,566,500

The WlPP land-withdrawal boundary, or the "WlPP site boundary", is an approximately 6.4 X
6.4 km area near the center ofthe model domain. The boundary of the WlPP site is defined by
the coordinates shown in Table 2. For the calculations described in this report, the coordinates
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shown in Table 2 are used to detennine different measures of the effectiveness of the monitoring
network.

Table 2. The UTM (NAD27) coordinates of the WIPP site boundary.

Domain Corner X Coordinate (meters) Y Coordinate (meters)
Northeast 616,941 3,585,109
Northwest 610,495 3,585,068
Southeast 617,015 3,578,681
Southwest 610,567 3,578,623

1.5 Observed Data
The approaches developed in this report can be applied to any set of simultaneous head
measurements. Additionally, the monitoring network optimization techniques developed herein
can also be applied to sets ofheads measured at different times and the differences in the results
will provide an indication of changes in the heads and gradient over time. For comparison across
different times, the wells in which the heads are measured must remain constant. To develop and
demonstrate the monitoring network optimization approaches in this report, two different sets of
heads measured in the same wells three years apart, August 2000 and August 2003, are
employed.

The observation wells are taken from the current Culebra monitoring network. The wells used
for this analysis are the intersection ofthe set of wells in which heads were observed in both
August of2000 (WTS, 2003) and August of2003 (Jones, 2003). In two cases, H-9 and H-IO,
different wells on the same hydropad (-30 m apart) were monitored at the two different times.
For these analyses, the two different wells on each hydropad are considered to be equivalent and
are counted as a single well. Additionally, the WIPP-29 well was removed from the analysis
because it is far enough west of the other wells that heads measured in WIPP-29 are not
representative of the heads in the vicinity of the WIPP site. The final sets of30 wells and the
adjusted freshwater heads measured in those wells in both 2000 and 2003 used in the monitoring
network analysis in this report are shown in Table 3.
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Table 3. Results of Monthly Head Monitoring Program for August 2000 and 2003.

Adjusted Adjusted
y 2000 2003 Difference

Integer Well X coordinate coordinate Freshwater Freshwater 2003-2000
ID Name (m) (m) Head (m) Head (m) (meters)
I AEC-7 621126 3589381 933.10 933.36 0.26
2 DOE-I 615203 3580333 915.42 916.49 1.07
3 ERDA-9 613696 3581958 921.56 922.25 0.69
4 H-2b2 612661 3581649 926.28 927.13 0.85
5 H-3b2 613701 3580906 917.28 917.93 0.66
6 H-4b 612380 3578483 915.90 915.66 -0.24
7 H-5b 616872 3584801 936.73 937.12 0.39
8 H-6b 610594 3585008 933.79 934.51 0.72
9 H-7b2 608117 3574620 913.64 913.59 -0.05
10 H-9b/c 613989 3568261 911.27 911.28 0.01
11 H-lOb/c 622975 3572473 922.42 922.06 -0.36
12 H-11b4 615301 3579131 915.52 915.45 -0.06
13 H-12 617023 3575452 916.10 917.02 0.92
14 H-17 615718 3577513 917.38 917.99 0.61
15 H-19bO 614514 3580716 917.65 918.30 0.65
16 P-17 613926 3577466 913.46 913.79 0.33
17 WIPP-12 613710 3583524 935.30 935.82 0.52
18 WIPP-13 612644 3584247 935.29 935.18 -0.11
19 WIPP-19 613739 3582782 937.88 938.59 0.70
20 WIPP-21 613743 3582319 926.55 927.12 0.57
21 WIPP-22 613739 3582653 932.83 933.59 0.76
22 WIPP-25 606385 3584028 931.66 932.14 0.49
23 WIPP-26 604014 3581162 921.14 921.25 0.12
24 WIPP-30 613721 3589701 936.79 938.23 1.43
25 WQSP-I 612561 3583427 935.69 936.29 0.60
26 WQSP-2 613776 3583973 938.75 939.05 0.30
27 WQSP-3 614686 3583518 935.70 935.97 0.27
28 WQSP-4 614728 3580766 917.87 918.45 0.58
29 WQSP-5 613668 3580353 917.12 917.88 0.76
30 WQSP-6 612605 3580736 920.16 920.95 0.79

The locations of the monitoring wells in Table 3 with respect to the WIPP site are shown in
Figure 1.
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Figure 1. Locations ofthe monitoring wells with head observations (Table 3) used in this study.

In general, there has been a rise in head from 2000 to 2003 (positive values in the right column
of Table 3), with a maximum rise of 1.43 meters in WIPP-30. The degree ofchange in the heads
across the 3-year time period is shown as a scatterplot in Figure 2. Figure 2 shows that the rise
in heads during this three-year time period has been fairly uniform and independent of the actual
magnitude of the measured head.

15



 

 Information Only 

i VI,
I

I /
i

1/
i./

1/ -

/ I

940

935

~

'* 930.§.
"tl
IV..

925:z:

'"<:>
<:>
N- 920..
::l
Cl
::l
c(

915

910
910 915 920 925 930 935 940

August 2000 Head (meters)

Figure 2. Scatterplot showing the relationship between the heads measured in August 2000 and
August 2003.

In addition to the measured heads from August 2000 and August 2003, calculation results from
the most recent stochastic inverse calibration ofthe Culebra transmissivity fields (McKenna and
Hart, 2003) are also used. These results include the simulated head values and calibrated
transmissivity values for each calibrated field. These files are stored on the lylinl02
computational cluster in the subdirectories below: Ih/WIPPcvs/trans/runs/. These results are
used in the third approach, sensitivity-based, to long-term monitoring network design.
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2.0 Geostatistical Variance Reduction

Geostatistics is the study and modeling of spatially correlated information and it has been used
extensively over the past 30 years in areas including ore reserve estimation, contaminant
mapping in soils and groundwater and modeling spatial variability ofphysical properties of
aquifers and petroleum reservoirs. The geostatistical algorithm used for spatial estimation is
kriging and, compared to other spatial interpolation algorithms, kriging is unique in that it
produces both an estimate and a variance about that estimate at unsampled locations.

Previous studies (e.g., Rouhani, 1985) have used the kriging variance as a measure of the ability
of a groundwater monitoring network to predict heads at locations where no wells exist.
Groundwater monitoring network design can be optimized to reduce the kriging variance to a
prescribed level at all locations or to minimize the maximum kriging variance. Calculation of
the kriging variance can also be used to determine what wells to remove from an existing
network such that the overall kriging variance has a minimal increase when those wells are
removed. As an example, Tuckfield et al. (200I) used the kriging variance of contaminants in a
plume to determine the redundancy of groundwater contaminant monitoring wells and targeted
those wells with the highest redundancy for removal from the network. A major advantage of
monitoring network design using kriging is that the kriging variance is not a direct function of
the sample value at any single point and therefore changes in the kriging variance from the
addition or removal of a well can be determined prior to adding or removing that well.

2.1 Trend Fitting and Residual Calculations
The more recent ofthe two sets ofhead observations, August 2003, are used for the geostatistical
variance reduction analysis. A single best-fit planar gradient for these heads was calculated
using the equation fitting tool in SigmaPlot (version 8.02). The equation for the best-fit plane to
the August 2003 heads is:

Head(x,y) =Ax + By + C (1)

The results of this equation fitting produced A = 1.98E-04, B = 1.62E-03 and C = 5007.74. With
these parameter values, (1) fits the August 2003 heads with an R2 of0.60. Diagnostics regarding
the equation fitting process are given in Appendix 1. This best-fit plane has a hydraulic gradient
of 1.64E-03 and a flow direction (negative of the mathematical gradient) of 173.040

counterclockwise from north, or ~173.04°. Results of these calculations are stored in the
spreadsheet TrendJesults.xls on the CD-ROM as part of this analysis package (see the
"Calculation Details" section). Residuals between the measured and estimated heads are
calculated and shown in Table 4. The estimated and measured heads are compared graphically
in Figure 3. Figure 3 shows that the planar fit to the heads has difficulty in estimating the highest
and lowest measured heads.
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Table 4. August 2003 head data and estimates of the head data from a best-fit plane. The
residuals in the right column are calculated as the estimated - measured head.

Integer Well X coordinate Y coordinate Measured Estimated Residual
ID Name (m) (m) Head (m) Head (m) (m)
I AEC-7 621126 3589381 933.36 940.48 7.12
2 DOE-I 615203 3580333 916.49 924.62 8.13
3 ERDA-9 613696 3581958 922.25 926.96 4.71
4 H-2b2 612661 3581649 927.13 926.25 -0.88
5 H-3b2 613701 3580906 917.93 925.25 7.32
6 H-4b 612380 3578483 915.66 921.06 5.40
7 H-5b 616872 3584801 937.12 932.20 -4.92
8 H-6b 610594 3585008 934.51 931.29 -3.22
9 H-7b2 608117 3574620 913.59 913.95 0.36
10 H-9b/c 613989 3568261 911.28 904.79 -6.49
11 H-lOb/c 622975 3572473 922.06 913.40 -8.66
12 H-llb4 615301 3579131 915.45 922.69 7.24
13 H-12 617023 3575452 917.02 917.06 0.04
14 H-17 615718 3577513 917.99 920.15 2.16
15 H-19bO 614514 3580716 918.30 925.11 6.81
16 P-17 613926 3577466 913.79 919.71 5.92
17 WIPP-12 613710 3583524 935.82 929.50 -6.32
18 WIPP-13 612644 3584247 935.18 930.47 -4.71
19 WIPP-19 613739 3582782 938.59 928.31 -10.28
20 WIPP-21 613743 3582319 927.12 927.55 0.43
21 WIPP-22 613739 3582653 933.59 928.10 -5.49
22 WIPP-25 606385 3584028 932.14 928.87 -3.27
23 WIPP-26 604014 3581162 921.25 923.75 2.50
24 WIPP-30 613721 3589701 938.23 939.53 1.30
25 WQSP-l 612561 3583427 936.29 929.12 -7.17
26 WQSP-2 613776 3583973 939.05 930.25 -8.80
27 WQSP-3 614686 3583518 935.97 929.69 -6.28
28 WQSP-4 614728 3580766 918.45 925.23 6.78
29 WQSP-5 613668 3580353 917.88 924.35 6.47
30 WQSP-6 612605 3580736 920.95 924.76 3.81
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Figure 3. Scatterplot showing the relationship between the measured heads and those estimated
with the best-fit plane for the August 2003 sampling period.

The residuals between the estimated and measured heads are used as the input data for the
geostatistical analysis. The X, Y, measured head and residual values from the TrendJesults.xls
file are saved in Aug_03Jesid.dat and a six line GeoEAS header is added to this file to allow for
its use in the variogram and kriging calculations. The reason for using the head residuals in the
geostatistical analysis is that the raw head measurements represent a strong trend in the data from
high heads in the north to lower heads in the south. This type of trend is representative of a non­
stationary mean in the data; however, geostatistical models have an inherent theoretical
assumption of second-order (mean and variance) stationarity. Therefore, the head residuals
represent the detrended head measurements and are suitable for geostatistical modeling.
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2.2 Variogram Calculation and Modeling
The experimental variogram is calculated and then modeled using the commercial off-the-shelf
VarioWin (version 2.21) software (Pannatier, 1996). The experimental variogram is calculated
as:

A I N(h)

r(h) = Z)z(uJ-z(u; +h)]'
2N(h) ;=1

(2)

where h is the lag spacing, z are the residual values, N(h) is the number of pairs of data points for
a given lag spacing and u is a vector of spatial coordinates (x,y) for the sample locations of each
residual value. The values of the experimental variogram y(h), are plotted as a function ofb and
a variogram model is fit to these data. Only a few variogram models are available that will
produce a positive definite covariance matrix in the kriging equations and one of these, the
Gaussian model, is chosen to fit the experimental variogram points. The equation of the
Gaussian variogram model as implemented in VarioWin is:

(3)

where C is the sill and a is the range. The Gaussian model fit to the experimental variogram
points is shown in Figure 4. This model has a nugget value of 13.0, a sill of45.2 and a range of
9000 m. The numbers of data pairs that were used for the calculation of each point in the
experimental variogram are also shown in Figure 4. The calculation of the experimental
variogram was done by considering combinations ofpairs of data points in all directions, an
"omnidirectional calculation". Due to the limited number ofhead data, 30, it was not possible to
calculate directionally dependent variograms that might show anisotropy in the spatial
correlation of the residuals. The Gaussian model fit to the experimental variogram in Figure 4
was constrained to reach a maximum at the covariance of the residual data set, 58.2 m2

, as shown
by the horizontal dashed line in Figure 4. The experimental variogram points beyond the range
of 9000 m and above the level of the covariance represent negative spatial correlation and are a
result ofthe first-order trend surface fit to the measured heads not accounting for all variation in
the head data. Higher order trend surfaces could be fit to the data, but the planar model is used
here to be consistent with the calculations done for the local gradient estimates in the following
section.
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Figure 4. Experimental omnidirectional variogram (points) and Gaussian model variogram
(line) fit to it.

2.3 Kriging
Kriging is a geostatistical algorithm for calculating spatial estimates of a measured property at
unsampled locations. The kriging equations are formulated to provide an unbiased, minimum
variance estimate of the property from a linear combination ofthe surrounding measured data. A
distinct advantage ofkriging over other spatial estimation algorithms is that in addition to the
property estimates, kriging also provides a measure of the uncertainty about each estimate. The
uncertainty measure is known as the kriging variance or the estimation variance. Details on the
many variants of the kriging algorthim and its application can be found in Deutsch and Journel
(1998), Goovaerts (1997), and Olea (1999) among others. For this work, we use ordinary
kriging (OK) and the details ofthe OK algorithm are presented briefly.

Consider the problem of estimating the value of a continuous attribute, z, (e.g. head residual) at
an unsampled location u. The information available consists ofmeasurements ofz at n locations
u", z(u,,), a = 1,2, ... , n, as obtained at the monitoring wells. Kriging is a form of generalized
least square regression and therefore all univariate kriging estimates are variants ofthe general
linear regression estimate z*(u) defined as:

n(u)

z· (u) - m(u) = LA-a, (u)[z(u a,) - m(ua,)]
al=l

(4)

21



 

 Information Only 

where ilo.1(u) is the weight assigned to the datum Z(Uo.l) and m(u) is the trend component of the
spatially varying attribute. In practice, only the observations closest to u being estimated are
retained, that is the n(u) data within a given neighborhood or window W(u) centered on u. If
there is no trend in the data across the site, m is no longer a function of the spatial location u but
is now the global mean of the data set, then (4) defines the simple kriging, SK, estimator. In
most practical applications ofkriging, SK has proven to be overly restrictive and ordinary
kriging is the preferred choice.

The most common kriging estimator is OK, which estimates the unsampled value z(u) as a linear
combination of neighboring observations without enforcing a global mean onto the estimate:

n(u)

Z~K (u) = Iil~,K (u)z(u a)
G1=1

OK weights ito. are determined so as to minimize the error or estimation variance d(u) =
•Var{Z (u)-Z(u)} under the constraint of unbiasedness ofthe estimate (5). These weights are

obtained by solving a system of linear equations, which is known as the "ordinary kriging
system". Solution of the kriging system requires that covariances, Cov, between any two
locations be calculated. These covariances are derived from the variogram model under an
assumption of second-order stationarity.

(5)

/I(U)

Iilp(u) r(ua - up) - p(u) =r(ua - u)
p"l
n(u)

Iilp(u) =1.
p=l

a = l, ...,n(u)

(6)

The unbiasedness of the OK estimator is ensured by constraining the weights to sum to one,
which requires the definition of the Lagrange parameter ,u(u) within the system of equations.
The addition of the Lagrange parameter can be thought of as the addition of another unknown to
balance the additional equation added to the system to ensure unbiased estimates. The only
information required for solution of the OK system is the variogram values for different lags, and
these are readily derived from the variogram model fit to experimental values.

The kriging variance is also derived from the set ofweights and the Lagrange parameter
determined through solution of (6) and it is given as:

N

a~K(u) = Cov(O)- Iil,Cov(u,u,)- P
j=l

(7)

The covariances used to calculate the ordinary kriging variance are derived from the variogram
model. The covariance with a zero distance argument, Cov(O) is equal to the variance of the data
set. The kriging variance has units of the square of the quantity being estimated, in this case
head residuals, m2

• It is important to note that the OK variance is not a function of the specific
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data values, other than how those data values define the variogram of the residuals. As shown
below, the kriging variance is only a function of the data configuration defined relative to the
variogram model. Additionally, the kriging equations are non-parametric meaning that the OK
estimate and the OK variance are the mean and variance of the local distribution defining the
uncertainty in the estimate at any location, but there is no shape (e.g., Gaussian) assigned to that
distribution. If it is necessary to assign a shape to this distribution, the multivariate Gaussian
(mG) variant of kriging can be used.

2.4 Estimation Variance Calculations
The program kt3d (Deutsch and Joumel, 1998) is used with the variogram model determined
above to calculate both the estimated residuals and the estimation variance at all locations. The
input parameter file for running kt3d, kt3d.par, is given in Appendix 2. The results ofthe
kriging calculation are in the IMonitoring_04 \Geostat subdirectory on the CD-ROM. The fhll
calculation domain is 68,768 cells, each lOOxlOO meters, with 14,570 of those cells, 21 percent,
lying to the west of the no-flow boundary. Those cells are not included in the calculations of
estimation variance. A total of 4290 of the active cells are within the boundaries of the WIPP
site. For the calculations done herein, the average estimation variance both within the flow
domain and within the WIPP site are calculated for different monitoring well configurations.

The map of estimation variance for the August 2003 monitoring network defined in Table 3 is
shown in Figure 5. From Figure 5, the effect of the monitoring network configuration on the
resulting estimates ofvariance is obvious. The lowest estimation variance values, the nugget
value of 13.0, occur at the well locations and the highest values occur at locations that are
beyond the distance ofthe variogram range, 9000 meters, from the closest observation well. The
minimum possible value of the kriging variance is the value of the nugget in the variograrn
model. Therefore, complete coverage of the site by the monitoring network would result in an
estimation variance of 13.0 at all locations. Under ideal conditions, the maximum possible value
of the kriging variance is equal to the total sill of the variogram, 58.2 m2 in this case; however, in
cases where data points are clustered, such as within the WIPP site, screening of some data by
others can result in negative kriging weights that cause the kriging variance to increase above the
level of the sill. The maximum kriging variance in these calculations is approximately 82 m2

• In
the following analysis, the actual values of the kriging variance are not significant, it is only the
relative changes in the kriging variance due to the addition, or subtraction, ofwells to, or from,
the monitoring network that are of interest.
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The full monitoring network of30 wells and the variograrn model calculated from the head
residuals at those 30 wells produce an average estimation variance within the flow domain of
53.6 m2and an average estimation variance within the WIPP domain of23.5 m2

• From the map
in Figure 5, it is obvious that there are many locations outside ofthe WIPP site where the
addition ofa well would have maximum impact on reducing the estimation variance. These
locations are wherever a well could be located where its influence does not overlap on the region
ofdecreased variance from an already existing monitoring well. Within the WIPP site, the
estimation variance is already relatively low at all locations. In fact, given the small distances
between some wells relative to the range of the variogram, it may be possible to remove some of
the existing wells with only minimal increase in the estimation variance within the WIPP site
boundary.
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Figure 5. Kriging variance (m2
) for estimation of the residuals between the estimated and

measured heads.

Any location that is proposed for a new well can easily be added to the current data set and the
estimation variance can be recalculated with inclusion of the proposed well. This approach takes
advantage of the fact that the estimation variance does not depend on the data values, only the
data configuration. This approach does require the assumption that the variogram model would
not change significantly with the addition ofone new well. Therefore it is easy to add one or
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more proposed well locations to the current network and recalculate the estimation variance.
Given the large number ofpotential well locations that could all produce a maximum reduction
in the estimation variance, locations for the addition of new wells are not quantified any further
than the map shown in Figure 5 for this study. When new well locations are proposed and/or
drilled in the future, these calculations can be completed (See section 6.0 for an example).

The same approach for determining the variance reduction due to the addition of a new
monitoring well can also be used to calculate the increase in the estimation variance from the
removal of an existing well. In this case, it is possible to recalculate the variogram model from
the remaining wells after any number of wells are removed; however, to make the process more
efficient, the same variogram is used for all calculations done herein. This approach assumes
that the variogram does not change significantly with the loss of anyone of the 30 wells.

Each existing well, with the exception of the H-19 well and the WQSP wells that must remain in
any future monitoring network configuration, is removed and the average estimation variances
across the flow domain and the WIPP site are recalculated. These calculations were done in the
IMonitoring_04\Geostat\krig_minus subdirectory through the use ofa DOS batch file
krig_min.bat. All of the input data files, each with a different data point removed, are located in
this directory. A listing of this batch file is given in Appendix 3. Those wells that cause the
smallest increase in average estimation variance are the ones that could be removed with a
minimal impact on the ability of the monitoring network to provide accurate predictions ofheads
at locations without monitoring wells. The results ofthese calculations are shown in Table 5.
The summary calculations for Table 5 are contained in the results_min.xls file in the
IMonitoring_04\Geostat Ikrig_minus subdirectory

Table 5 shows the average estimation variance within the flow domain as well as within the
WIPP site area as calculated using all wells in the network (top row) and also for the remaining
23 wells when each well is removed from the network in sequence. Removal of the WQSP wells
and the H-19 well are not considered, as the WQSP wells must remain in any future monitoring
network and H-19 is a relatively new, fiberglass-cased well with an expected long useful life.
Table 5 also shows the percent increase in the average estimation variance for the entire domain
and within the WIPP site when each well is removed from the network. Removal ofwells that
result in the largest increases in the estimation variance are the wells that are most important with
respect to the ability of the network to predict heads. Therefore, if the goal is to predict heads
across the entire domain, the wells that create the largest increases in estimation variance when
removed are generally those located distant from other wells: AEC-7, WIPP-30, H-lO, H-9, H-7,
WIPP-25, and WIPP-26. Because these wells are located far from other wells, the removal of
more than one of them would cause the overall increase in the estimation variance to be the sum
of the increases due to removal of the individual wells. Small decreases in the estimation
variance can also occur with the removal ofa well (e.g., WlPP-13). These decreases are due to
the configuration of the current wells creating negative kriging weights in the solution ofkriging
equations. These decreases are always less then one-tenth of one percent of the original variance
and are considered as insignificant changes in this work.
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Table 5. Results of estimation variance changes for the removal ofone well from the current
head-monitoring network.

Well Domain Percent WIPP Percent
Removed Averal!e Increase Averal!e Increase

None 50.84 NA 23.30 NA
AEC-7 53.87 6.0 23.34 0.2
DOE-I 50.83 0.0 23.75 1.9

ERDA-9 50.84 0.0 23.31 0.0
H-2 50.85 0.0 23.74 1.9
H-3 50.84 0.0 23.33 0.1
H-4 51.08 0.5 24.29 4.2
H-5 51.94 2.2 25.37 8.8
H-6 51.46 1.2 24.06 3.3
H-7 52.09 2.5 23.33 0.1
H-9 52.93 4.1 23.30 0.0

H-IO 53.11 4.5 23.34 0.2
H-II 50.84 0.0 23.69 1.6
H-12 51.97 2.2 23.33 0.1
H-17 50.83 0.0 23.45 0.6
P-17 50.96 0.2 23.40 0.4

WIPP-12 50.83 0.0 23.32 0.1
WIPP-13 50.80 -0.1 23.59 1.2
WIPP-19 50.84 0.0 23.30 0.0
WlPP-21 50.84 0.0 23.29 0.0
WlPP-22 50.84 0.0 23.30 0.0
WlPP-25 52.14 2.6 23.32 0.1
WIPP-26 51.99 2.3 23.32 0.1
WlPP-30 53.44 5.1 23.32 0.0

The wells that could be removed from the network and create the smallest increase in the
estimation variance are those wells in close proximity to other existing wells. These include:
DOE-I, ERDA-9, H-2, H-3, H-ll, WlPP-12, WlPP-19, WlPP-21 and WlPP-22 (Table 5).
However, because these wells are close to existing wells, the increase in the estimation variance
from removing more than one of them will not be additive, but will become significantly larger
as all wells are removed from a given area in the aquifer.

The wells outside of the WlPP site that, when removed, create the largest increases in the
estimation variance for the flow domain have extremely little or no effect on the estimation
variance within the WlPP site. These wells, AEC-7, H-9, H-IO, H-12, WIPP-25, WlPP-26, and
WlPP-30, are too far away from the WlPP site to impact the estimation variance therein. The
most important monitoring wells, those that create the largest variance increase upon removal,
for predicting heads within the WlPP site are: H-5, H-4, and H-6. The wells that create the
smallest increases in estimation variance upon removal for both the WlPP site and the flow
domain are: ERDA-9, H-3, WlPP-12, WlPP-19, WIPP-21 and WlPP-22. Anyone of these six
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wells could be removed with minimal effect on the ability of the network to predict heads across
both the domain and the WIPP site. These calculations are for removal of a single well.

Two additional well-removal scenarios are considered. Wells WIPP-12 and WIPP-22 are
removed from the network and then the changes in estimation variance for the removal of each
remaining well in the network are calculated as done previously. Then, wells WlPP-12, WIPP­
22, H-12, and P-17 are removed and each remaining well is removed one at a time and the
estimation variances are recalculated. Wells H-12 and P-17 were removed based on their
expected limited remaining life span within the monitoring network.

A decision was made to use the original residual variogram (Figure 4) for all calculations. The
removal of two or more wells from the data set does change the shape and range of the
variogram. However, the goal ofthis exercise is to examine changes in estimation variance due
solely to the removal of different sets of wells and, to compare results across the different well
removal scenarios, the original variogram was used for all calculations. The results of these two
sets of calculations are shown in Tables 6 and 7.

Table 6. Results of estimation variance changes for the removal of one well from the head­
monitoring network after wells WIPP-12 and WIPP-22 have been removed.

Well Domain Percent WIPP Percent
Removed Averal!e Increase Averal!e Increase

WIPP-12 & WIPP-22 50.83 NA 23.32 NA
AEC-7 53.86 6.0 23.35 0.2
DOE-I 50.83 0.0 23.77 1.9

ERDA-9 50.83 0.0 23.32 0.0
H-2 50.84 0.0 23.75 1.8
H-3 50.83 0.0 23.34 0.1
H-4 51.07 0.5 24.30 4.2
H-5 51.91 2.1 25.35 8.7
H-6 51.45 1.2 24.08 3.3
H-7 52.08 2.5 23.34 0.1
H-9 52.93 4.1 23.32 0.0
H-I0 53.10 4.5 23.35 0.1
H-ll 50.83 0.0 23.70 1.6
H-12 51.96 2.2 23.34 0.1
H-17 50.82 0.0 23.47 0.6
P-17 50.95 0.2 23.41 0.4

WIPP-13 50.79 -0.1 23.64 1.4
WIPP-19 50.83 0.0 23.33 0.1
WIPP-21 50.83 0.0 23.32 0.0
WIPP-25 52.13 2.6 23.34 0.1
WIPP·26 51.98 2.3 23.33 0.1
WIPP·30 53.42 5.1 23.33 0.1
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Table 7. Results of estimation variance changes for the removal ofone well from the head­
monitoring network after wells WIPP-12, WIPP-22, H-12, and P-17 have been removed.

Well Domain Percent WIPP Percent
Removed Averaee Increase Averaee Increase

WIPP-12, WIPP-22, H-12, P-17 52.01 NA 23.43 NA
AEC-7 55.07 5.9 23.48 0.2
DOE-l 51.97 -0.1 23.89 1.9

ERDA-9 52.00 0.0 23.43 0.0
H-2 52.02 0.0 23.86 1.8
H-3 52.00 0.0 23.46 0.1
H-4 52.46 0.9 24.80 5.8
H-5 53.13 2.2 25.52 8.9
H-6 52.63 1.2 24.19 3.2
H-7 53.35 2.6 23.46 0.1
H-9 54.30 4.4 23.43 0.0

H-IO 54.55 4.9 23.48 0.2
H-ll 51.87 -0.3 23.84 1.7
H-17 52.59 1.1 23.65 0.9

WIPP-13 51.97 -0.1 23.75 1.4
WIPP-19 52.00 0.0 23.45 0.1
WIPP-21 52.00 0.0 23.44 0.0
WIPP-25 53.31 2.5 23.45 0.1
WIPP-26 53.16 2.2 23.45 0.1
WIPP-30 54.62 5.0 23.45 0.1

Results of the average variance calculations shown in Tables 5, 6, and 7 (columns 2 and 4) can
be compared across all three tables as these are absolute values. The percent increases in
estimation variance are relative to the base case in each table and cannot be compared across
tables. The base cases considered are all 30 wells in the network (Table 5), wells WIPP-12 and
WIPP-22 removed (28 wells total, Table 6), and wells WIPP-12, WIPP-22, H-12, and P-I7
removed (26 wells total, Table 7).

The results show that removing wells WIPP-12 and WIPP-22 has negligible effect on the
average estimation variances at both the domain and WIPP site scales. These results are
expected as both ofthese wells are very close to other wells in the monitoring network (Figure
1). When H-I2 and P-I7 are also removed from the network, the change in average variances
becomes significant (e.g., the average domain variance increases by more than one percent from
50.8 to 52.0. This is also expected as these two wells are not close to other wells in the network
and therefore have a larger impact. The change in variances due to removal ofjust these two
wells can be determined by comparing the top rows of Tables 5 and 6. The increase in variance
with the removal ofH-I2 and P-I7 is larger for the domain than within the WIPP site as both of
these wells are outside of the WIPP site boundaries. From the final set of results in Table 6,
wells ERDA-9, H-3, WIPP-I9 and WIPP-21 are likely candidates for removal.
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In summary, it is relatively simple to calculate the decrease or increase in the head estimation
variance over a specified area from the addition or removal of a single monitoring well,
respectively. The maximum reduction in estimation variance, or increase in the ability to predict
heads, can be achieved by placing a new monitoring well in any location of the flow domain that
is far away from any existing well. There are a large number of locations in the domain where a
new well could be placed to meet this condition. At this point in the analysis, a maximal
reduction in variance from a new well can be considered as a necessary, but not complete,
condition for locating a new well. The estimation variance map shown in Figure 5 will be
combined with other analyses such as local gradient estimators and sensitivity maps, as well as
practical concerns such as development costs and access to the location, to determine the optimal
locations for additional wells.

Removal of wells from the existing monitoring network was also examined using the estimation
variance calculations. The impact ofwell removal was evaluated by calculating the increase in
estimation variance for both the entire flow domain and the area of the WIPP site. These
calculations were done for the removal of one well at a time starting from a base case network of
30,28, or 26 wells and the results are only valid for the removal of the one specified well. These
results also assume that the variogram is constant across all monitoring network configurations.
These calculations can be completed again for removal of combinations of multiple wells when
those combinations of interest are defined. Wells that are most important to the existing
monitoring network that should not be removed are listed above and are, generally, those wells
most distant from any existing wells. Wells that have the smallest influence on the ability of the
current network to predict heads at unmeasured locations across the entire flow domain as well
as within the WIPP site are also listed above. Ifmore than one well is to be removed, the
combinations of wells should be selected from this list.

2.5 Calculation Details
All calculations done for the variance reduction section were completed on a PC with a 1.7-GHz
Pentium 4 chip under the Windows 2000 operating system. These calculations are contained
within the IMonitoring_04\Geostat\ directory on the CD-ROM accompanying this analysis
package. Four different calculations were done in this section:

1) A planar trend was fit to the existing data and residuals between the measured heads and
the planar trend were calculated using the commercial off-the-shelf software SigmaPlot
(ver. 8.02).

2) Variograms ofthe residuals were calculated and modeled using the commercial off-the­
shelf software VarioWin (ver. 2.21). The variogram model parameters determined here
are necessary input to the kt3d code for the kriging step.

3) The residual fields were kriged using the software package kt3d. kt3d is part of the
GSLIB public domain geostatistics software library and has been qualified and used
previously on the WIPP project for the inverse calibration of transmissivity fields
(McKenna and Hart, 2003). The output files from kt3d are named
"Aug_03Jesid_min_WELL.out" where the WELL portion of the file name is replaced
with a character string that identifies the well removed from the network for that
particular calculation. The output files from running kt3d multiple times are used as
input to the calc_var.c routine.
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4) The average estimation variance across the domain and within the WIPP site boundaries
for the case of all 30 wells and for each case where a single well is removed are
calculated using the routine: calc_var.c. These calculations are in the
IMonitoring_04IGeostat\krig_minl subdirectory. The routine calc_var.c is qualified as
part of this analysis package. The final results of the variance reduction calculations are
stored in the Excel spreadsheet: results_min.xIs and the calculations ofthe percent
variance reduction for each different configuration ofmonitoring wells relative to the
current monitoring network are also calculated in this spreadsheet.

5) The average estimation variance across the domain and within the WIPP site boundaries
for the base case of 28 wells and for each case where a single well is removed are
calculated using the same routine: calc_var.c. These calculations are in the
lMonitoring_04\Geostatlkrig_min31 subdirectory. The final results of the variance
reduction calculations are stored in the Excel spreadsheet: results_min3.xls and the
calculations of the percent variance reduction for each different configuration of
monitoring wells relative to the current monitoring network are also calculated in this
spreadsheet.

6) The average estimation variance across the domain and within the WIPP site boundaries
for the base case of 26 wells and for each case where a single well is removed are
calculated using the same routine: calc_var.c. These calculations are in the
lMonitoring_04IGeostatlkrig_min5\ subdirectory. The final results of the variance
reduction calculations are stored in the Excel spreadsheet: results_min5.xls and the
calculations of the percent variance reduction for each different configuration of
monitoring wells relative to the current monitoring network are also calculated in this
spreadsheet.
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3.0 Local Gradient Estimation

The Culebra is a nearly textbook example of a 2-D aquifer. It is much more laterally extensive
than it is thick and it is bounded on the top and bottom by relatively impermeable units. For such
an aquifer, the groundwater flow patterns are essentially two-dimensional and any three
measurements of the hydraulic head at different locations are all that is needed to estimate the
magnitude and orientation of the hydraulic gradient. This three-point estimation is also referred
to as a "local" gradient estimate as the estimates are relevant only in the area ofthe three head
measurements. Recently, there has been a strong interest in the use of three-point estimators for
discerning information on groundwater flow patterns that is more highly resolved than just an
estimate of the magnitude and orientation of the regional gradient.

Two separate sets of calculations are done for the application of three-point estimators to
determining flow patterns in the Culebra:

1) Simulations are completed using synthetic data to critically examine the applicability of
three-point estimators through Monte Carlo simulation. The effects of estimator shape,
orientation of the estimator relative to the direction of groundwater flow and the effects
of measurement error are examined using synthetic data. Results of these calculations
provide a set ofconstraints for application ofthree-point estimators to the Culebra data in
step 2.

2) The use of three-point estimators in detecting temporal changes in the Culebra hydraulic
gradient and in determining both redundant wells in the existing monitoring network and
best locations to add wells to the monitoring network is demonstrated. This second set of
calculations is done using data collected from the Culebra monitoring network.

3.1 Background
The earliest work on examining three-point local hydraulic gradient estimators appears to be that
ofMizell (1980) who used perturbation theory to develop analytical expressions for the variance
ofthe estimated magnitude and orientation of the hydraulic gradient as a function ofthe length
scale of the three-point estimator normalized by the correlation length ofthe transmissivity field.
All of Mizell's (1980) results were calculated from only a single triangle shape (right-isosceles)
and the analytical expressions are limited to relatively small values of transmissivity field
variance. Results show that as the length scale of the estimator reaches and exceeds the
correlation length of the transmissivity field, the variance in the estimates decreases significantly.
In Mizell's formulation, for estimator length scales that are smaller than the correlation length of
the transmissivity field, the variance of the estimates is constant. The results of Mizell (1980)
show that measurement error only affects the results for estimator length scales less than the
correlation length of the transmissivity field. A simple application to three wells with 19 weekly
observations is presented.

The work of Mizell (1980) does not appear to have been published outside ofhis dissertation and
had largely gone unrecognized with the exception ofRuskauff and Rumbaugh (1996) who used
Mizell's results to guide a series of groundwater flow and solute transport simulations. Ruskauff
and Rumbaugh's (1996) results point out the fact that a groundwater flow model calibrated to
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observed heads within an acceptable tolerance will not necessarily reproduce the true magnitude
and orientation ofthe gradient.

Cole and Silliman (1996) looked at the ability of a three-point estimator with an isosceles shape
to accurately determine the orientation and magnitude of the hydraulic gradient in unconfined
aquifers. The goals of this study included a comparison of estimates made with the non-linear
equation for unconfined head versus estimates made with a linearized version of this equation in
terms ofhead squared. Additionally, Cole and Silliman (1996) completed a Monte Carlo
modeling study ofthe effects of heterogeneity on the accuracy and precision ofthe orientation
and magnitude estimates. Results of this work showed that the linearized unconfined flow
equation provided unbiased estimates ofboth orientation and magnitude. Contrary to the theory
developed by Mizell (1980), hydraulic conductivity heterogeneity with different levels of
variability and correlation lengths produces slightly biased estimates ofthe magnitude and the
orientation for well separation distances ofless than one correlation length. For larger well
separation distances, the accuracy and precision of the estimates improve, but large standard
deviations about the orientation estimates exist at relative well separations of 10 correlation
lengths or more.

Silliman and Frost (1998) pointed out that local estimates of the hydraulic gradient made with
three-point estimators could provide significant information on the regional gradient as well as
local variations in that regional gradient. They present plots of the estimated orientation and
magnitude from each combination of three wells as a function of the size (area) of the estimator
and demonstrate that these types ofplots can provide additional information on the regional
gradient beyond what might be gained from traditional head contouring techniques.
Demonstrations ofthese techniques are presented on a laboratory "ant-farm" aquifer and from
data collected at a field site. Results show that the plots developed in this work are excellent at
identifying anomalous flow directions and magnitudes and that when correlated, these two types
of anomalous results may indicate a region of low conductivity in the aquifer. This paper also
demonstrates the use ofexamining data at different times to detect changes.

Silliman and Mantz (2000) examined the effect of measurement error on the ability oflocal
gradient estimators to produce accurate estimates of the hydraulic gradient. This work was
focused on the effects of measurement error in estimating vertical gradients from four
measurement points in a three-dimensional domain. The results show that relatively small
amounts of measurement error can cause the estimated orientation of the vertical component of
the gradient to be straight up or straight down. Silliman and Mantz (2000) call for better
determination of the measurement error in field studies and warn that measurement error will
also complicate estimates ofhorizontal gradients when the gradient is small and/or the wells are
placed close together.

The solution for fitting a potentiometric surface to more than three head measurements is to
minimize a least squares, or average absolute, measure of the residuals between the fitted
potentiometric surface and the measured heads. Such an approach was followed by Devlin
(2003) who developed a spreadsheet program to calculate a least squares best-fit of the hydraulic
gradient using multiple linear regression with up to 20 different head measurements. The planar
surface that best fits multiple head measurements provides the orientation and magnitude of the
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regional hydraulic gradient rather than a more local estimate as can be obtained when using only
three measurements.

A large amount ofprevious work in monitoring network design has approached the problem
from the perspective of minimizing the head estimation variance calculated from the proposed
network (e.g., Rouhani, 1985; Loaiciga, 1989). This focus on monitoring head has led to the
development of techniques for determining point locations that are, by some measure, optimal
for the placement of new monitoring wells. A different perspective is to design a monitoring
network to detect changes in both the magnitude and orientation ofthe hydraulic gradient.
Estimation of the hydraulic gradient requires at least 3 wells, for a 2-D flow field, or 4 wells for a
3-D flow field and, contrary to head measurements, gradient estimates cannot be made from a
single point support datum. With the exception of the work by Conwell, et al. (1997), who were
interested in optimizing the design ofnetworks of local gradient estimators for the calculation of
variograms, monitoring network design from the perspective of data obtained using local
gradient estimators has not been studied.

This portion of the report presents a critical examination of the ability of three-point estimators
to accurately predict the orientation and magnitude of the gradient and then applies three-point
estimators to monitoring network design. Specifically, this work provides:

1) Assessment of the accuracy and precision of the gradient estimates under measurement
error when measurement error is cast in terms ofrelative head drop across the three-point
estimator.

2) Examination ofthe effect ofgroundwater flow orientation on accuracy and precision of
the gradient estimates made by three-point estimators.

3) Systematic examination of the effect of estimator shape on the accuracy and precision of
the gradient estimates.

4) Extension ofpreviously developed graphical techniques to detect and quantify changes in
the hydraulic gradient over time.

5) Use of three-point estimators to identify redundant wells in an existing monitoring
network.

6) Use ofthree-point estimators to identify optimal locations at which wells can be added to
the monitoring network to improve the ability of the network to detect changes in the
gradient.

3.2 Estimation of the Gradient
Following the work of Silliman and Frost (1998), the equation of the plane defining the
potentiometric surface of a confined aquifer is:

H(x,y)=Ax+By+C, (8)

where H is the value ofhead measured at location (x,y) and A, B and C are coefficients with
unknown values. Three measurements ofH at unique (x,y) locations provide enough information
to set up three equations and solve for the three unknowns: A, Band C. This solution leads to
expressions for the magnitude and orientation of the hydraulic gradient:
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magnitude =.JA' + B' ,

" (B)Orientation =arctan A .

(9)

(10)

A slightly expanded formulation of these expressions is given by Devlin (2003). Silliman and
Frost (1998) also provide the equivalent formulations for an unconfined aquifer.

3.3 Local Gradient Estimator Error Analysis
Two different aspects of the estimator and head measurement error are examined through Monte
Carlo simulations. These two aspects are the relative measurement error and the shape of the
estimator. All simulations assume that the estimator is applied to a steady-state groundwater
system in a homogeneous aquifer. The effects of the homogeneous aquifer assumption are
examined further below.

3.3.1 Relative Measurement Error
The amount of error inherent in measuring the head within an aquifer is not easily quantified.
Multiple factors including calibration and drift of the electronics in the measurement device,
changes in the measurement device hardware (e.g., cable stretching), elevation survey errors, and
variations in barometric pressure make it difficult to determine the true head level at any point in
a confmed aquifer. Additionally, as pointed out by Ruskauff and Rumbaugh (1996), the
importance of the amount ofmeasurement error is relative to the amount ofhead drop across the
estimator. In areas oflow gradients, small measurement errors may be enough to completely
degrade the estimates ofhydraulic gradient magnitude and orientation.

For this study, head measurement error is assumed to be normally distributed with a zero mean
and defined standard deviation: N(O.o). Measurement error is also assumed to be independent
between the three different measurement points in the estimator. In the Monte Carlo simulations
with synthetic data, measurement error is drawn independently from the N(O. a) distribution for
each ofthe three wells in a given three-point estimator. This error is then added to the known,
true, head value at each well to define the measured head (true + error) at each well and the
orientation and magnitude of the hydraulic gradient are calculated from these measurements. For
the case of synthetic data, the calculated values of the orientation and magnitude of the gradient
are compared to the true values calculated without the addition of error. Results of this
comparison are shown as a function ofthe relative head measurement error (RHME) defined as:

RHME= 0'
head drop

(II)

where head drop is the decrease in head across the estimator from one edge to the opposite along
a vector parallel but opposite to the direction of the gradient. The head drop is defined by the
orientation and magnitude of the true gradient, both ofwhich are known for the synthetic data
case. The RMHE is the absolute measurement error normalized by the expected head drop
across an estimator.
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Equation (8) is linear in head and therefore we would expect the variance of the estimates made
with (8) to increase linearly with increasing amounts of head measurement error (Taylor, 1996).
To examine the increase in the variance of the estimates, a single estimator shape, a right­
isosceles triangle, was used with 5000 sets ofhead measurement errors drawn at each of five
different levels ofRHME (one percent through ten percent). These measurements are then used
to estimate both the magnitude and orientation of the hydraulic gradient, and the ratio of the
estimated to true magnitude and orientation (Fignre 6). These results show that independent,
normally distributed measurement errors produce unbiased estimates ofthe magnitude and
orientation and that increasing measurement error decreases the precision (larger estimation
variance) of the gradient magnitude estimates more strongly than it does the gradient orientation
estimates.
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Figure 6. Box and whisker plots of the distribution of the ratio of the estimated to true
magnitude (left graph) and the estimated to true orientation (right graph) as a function of the
RHME. The boxes define the 25th and 75th percentiles. The whiskers define the 5th and 95th

percentiles and the circles beyond the ends of the whiskers are individual results. All
distributions contain 5000 results.

3.3.2 Estimator Shape and Gradient Orientation
Previous studies (e.g., Mizell, 1980; Cole and Silliman, 1996) have generally used a single
estimator shape, most often an equilateral or right-isosceles triangle and, to date, the effect of
different estimator shapes on the final gradient estimates has not been systematically studied.
Intuitively, triangles with very large or very small base to height ratios may provide poor
estimates of the magnitude and/or orientation ofthe hydraulic gradient for certain groundwater
flow directions.

Here, eleven different estimator shapes are examined to determine the effect of shape on the
ability of the three-point estimator to produce accurate and precise estimates of the gradient. The
eleven different shapes are all isosceles triangles and are defined by both the size of the two
equal angles as well as the base to height ratio (Figure 7). Each ofthe eleven different estimators
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encompasses the same area. For each estimator shape, the direction of groundwater flow is
varied in roughly 15-degree increments around the full 360-degree range (24 different
directions). At each groundwater flow orientation, Monte Carlo simulation is used to draw 2000
head measurements at each measurement location with a specified value ofRHME. Four
different levels ofRHME are used: 0.001, 0.005, 0.01, and 0.05.

The results of this analysis were examined in two ways: I) the effect of flow orientation on the
estimates ofmagnitude and orientation are examined for an individual estimator shape; and 2)
the results from the different flow orientations and estimator shapes are summarized.
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Isosceles Triangles with Equal Area
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Figure 7, Shapes ofthe different triangles examined in this study. Each triangle is defined by
the size ofthe two equal angles and the base to height ratio. All triangles have the same area.

The orientation of the flow relative to the three-point estimator can have a significant effect on
both the gradient magnitude and orientation estimates. This result is demonstrated in Fignre 8
that shows the results for the 41-degree estimator (base/height = 2,3), Figure 8 (top graph)
shows the percent absolute error in the estimation ofthe gradient magnitude as a function of the
orientation ofthe groundwater flow direction, Percent absolute error in the magnitude ofthe
gradient is calculated as:

P Ab I E
TrueMagnitude - EstimatedMagnitude X

ercent so ute rror = ----"--'-'---'-'==-'-'==--
TrueMagnitude

100

Each point on the upper graph in Figure 8 represents the 95th percentile of the distribution across
2000 realizations (i.e., 95 percent ofall calculated errors are less than or equal to the value
shown by each point in Figure 8). Results for calculations at each of the four different values of
RHME are shown, The solution for the gradient is set up such that a singularity occurs when the
flow direction is aligned with the right leg of the triangle and results with that flow direction
cannot be accurately determined. Figure 8 (lower graph) shows the absolute error, in degrees,
for the estimates of the orientation of the hydraulic gradient. The lower graph in Figure 8 is the
same as the upper graph with the exception that the Y-axis shows the absolute error ofthe
estimated orientation, not the percent absolute error as shown in the upper graph,

Disregarding the results at flow directions of-41 and 139 degrees (aligned with the right leg of
the triangle), the results in Figure 8 show that the different orientations ofthe groundwater flow
direction can change the resulting error in the estimates of the magnitude approximately one-half
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ofan order ofmagnitude. Changes in the error of the orientation estimates are somewhat less
than the errors calculated for the gradient magnitude (lower graph, Figure 8).
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Figure 8. The 95th percentile error values for gradient magnitude (upper graph) and orientation
(lower graph) for the 41 degree estimator as a function of groundwater flow direction and
RHME. The different levels of RHME are shown in the legend.

The change in error across the different flow directions is abstracted by calculating the median
value ofthe 95th percentile error across all 24 flow directions for each estimator shape. These
median error values are then plotted as a function ofestimator shape for each ofthe four
different values of RHME (Figure 9). Results in Figure 9 show that approximately one order of
magnitude variation in the hydraulic gradient magnitude error exists across the eleven different
estimator shapes for a single level ofRHME (upper graph, Figure 9). Results are similar for the
hydraulic gradient orientation error (lower plot, Figure 9) with the range in variation being
slightly less than one order of magnitude for any given level ofRHME. For both the magnitude
and orientation results, the minimum error values occur for three-point estimators with base to
height ratios between 0.5 and 5.0.
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Figure 9. The median 95th perceutile errors in magnitude (upper graph) and orientation (lower
graph) as a function of estimator shape and RHME. The different RHME values are shown by
the different symbols and the legend. Each median value is calculated across the results for the
24 different flow directions for a given estimator shape (e.g., the results in Figure 8).

The results of this analysis prove that not all three-point estimators produce equally accurate
estimates of the magnitude and orientation ofthe hydraulic gradient. Any analysis using three­
point estimators of the local gradient needs to take into account the shape of the triangle and the
value of the RHME.
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3.3.3 Choosing Acceptable Three-Point Estimators
For a given monitoring well network, the total number ofpossible three-point estimators can be
detennined as the number of unique combinations ofwells taken three at a time from the existing
monitoring network. The number of unique combinations containing n wells that can be chosen
from a total of m wells in the network is:

m!
mCn =-,--,---cc

n!(m - n)!
(12)

where mCn is read as "m choose n". For the set of monitoring wells considered in this example
(m=30), there are 4060 possible three-point estimators. However, as seen above, not all
estimators yield equivalently accurate estimates of the local gradient.

The criterion for acceptance of the estimators based on shape is simply to calculate the base and
height dimensions of each estimator and determine if the base/height ratio falls within the
acceptable limits of0.5 to 5.0.

The criteria for acceptance of estimators with respect to the RHME is implemented as follows:
I) All available wells for a given time period are used to calculate the magnitude and

direction of the regional gradient as a best-fit plane to the observed data. These
calculations are done in SigmaPlot and are in the lMonitoring_04\Planar_Trend\
subdirectory

2) The standard deviation ofthe nonnaIly distributed measurement errors is estimated based
on knowledge ofthe measurement instrument and field conditions and an acceptable
value of the RHME is specified.

3) The minimum distances in the X and Y directions (East-West and North-South) required
to achieve an acceptable head drop across an estimator based on the X and Y components
of the calculated regional gradient, (dhldx)reg and (dhldY)reg, and specified acceptable
RHME are detennined as:

X
min

= (dh) RHME
dx reg

Y
min

=(~h) RHME
Y r!?g

(13)

4) Each three-point estimator is evaluated to detennine whether or not it can contain Xmin

and Ymin within the bounds of the three wells. If yes, the estimator is retained. If not, the
estimator is not used to estimate properties ofthe gradient.

The implementation of the RHME criteria as described above is relatively simple. However, the
calculation ofXmin and Ymin will degenerate if the regional gradient is oriented in one of the
cardinal directions such that either (dh/dx)reg or (dh/dY)reg becomes undefined.
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3.4 Application 1: Monitoring Temporal Changes
The monthly Culebra head monitoring program at WIPP has incorporated practices over the past
several years to reduce absolute head measurement error to as little as possible. These practices
include routine calibration of the measurement instrument, using the same instrument for all well
measurements, surveyed elevations at each well and taking all measurements within a 24-36 hour
period to reduce head fluctuations in a single sampling round due to changes in barometric
pressure. However, as pointed out by other authors (e.g., Silliman and Mantz, 2000), it is nearly
impossible to completely quantify the head measurement error in the field. For the examples
shown in this work, the head measurement error is assumed to have a Gaussian distribution with
a mean of zero and a standard deviation of 0.1 0 meters.

The RHME is defined relative to the head drop across a given triangle along the direction of
groundwater flow as would occur given that the regional gradient in the Culebra applied locally
at all locations. This use of the regional gradient is done to avoid using the heads measured at
the three wells to estimate the local gradient as well as the local head drop and the RHME. For
each set ofmeasurements, the magnitude and the orientation of the regional gradient are
calculated using SigmaPlot 8.0. Results of these regional gradient calculations for both time
periods are stored on the CD-ROM in the \Monitoring_04\Planar_Trend\ directory in the
trendJesults.xis file. The magnitude and orientation of the calculated trends are shown in Table
8. The orientations in Table 8 are given as degrees counterclockwise from north where the
negative sign indicates the counterclockwise direction.

Table 8. Magnitude and orientation ofthe regional gradient as determined through the best-fit
plane technique for the 2000 and 2003 time periods.

Observation Period Ma~nitude (-) Orientation (de~rees)

August 2000 1.60E-03 -172.84
August 2003 1.64E-03 -173.04

The results in Table 8 show that the regional gradient is essentially unchanged from 2000 to
2003. The average of the two gradient magnitudes, 1.62E-03, and the average of the estimated
orientations, -172.94 degrees, will be used in the calculations of the local gradients from the
different estimators.

For a measurement distribution with a standard deviation of 0.1 0 meters and an acceptable
RHME of 0.02, two percent of the expected head drop across an estimator using the regional
gradient, the minimum X and Y distances that an estimator needs to have (Equations 13) are
approximately 25,000 and 3000 meters respectively. The large difference in the necessary
estimator size between the X and Y directions is due to the orientation of the regional gradient
being nearly due south. The closer the orientation of the regional gradient to due south, the less
significant the east-west components of the gradient vector become to the point where if the
orientation was completely due south, it would not be possible to calculate a distance in the X
direction using (13). Given this regional orientation, only the minimum Y distance is used to
screen out potential three-point estimators.
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The local estimates ofthe gradient by each three-point estimator are calculated for: 1) all
possible estimators; 2) those estimators with a shape such that 0.5> baselheight > 5.0; and 3)
those estimators with both 0.5 > baselheight > 5.0 and a minimum north-south distance of3000
meters. The results of these calculations are shown via the relationships developed by Silliman
and Frost (1998). However, to better interpret the information from the two different sampling
periods, the results of each sampling period are shown on a single graph. Figure 10 shows the
estimated magnitude of the gradient as a function of estimator size (area). The top image in
Figure 10 shows all of the 4060 possible estimators, the middle image shows only those
estimators that meet the shape criterion, and the bottom image of Figure 10 shows only those
estimators that meet both the shape and RHME criteria.

The graphs in Figure 10 show the estimated magnitude as a function of the size (area) ofthe
three-point estimator. For the larger triangles, the estimated magnitudes approximate that of the
regional magnitude of 1.6E-03 as determined above using the best-fit method. The size of the
estimators does not change from one time period to the next and therefore it is possible to
compare results along any vertical line for the same estimator. Changes in the estimated
magnitude from 2000 to 2003 are evident when the "plus" and "box" symbols do not overlap,
but are offset vertically from one another. Several instances of changes between time periods are
visible in lower left portions of the images.
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Figure 10. Estimated magnitude of the hydraulic gradient across all three-point estimators as a
function of estimator size for the 2000 and 2003 head data. The upper graph shows all
estimators, the middle graph shows results for those estimators meeting the shape criterion, and
the lower graph shows results for estimators meeting the shape and RHME criteria.
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Results (Figure 10) show that as additional criteria are applied to selecting estimators, the range
in the estimated gradient magnitudes decreases from roughly 4.5 orders of magnitude to 3.5
orders of magnitude with the biggest decrease due to the application of the RHME criterion
(bottom graph, Figure 10). Almost all of the reduction in the range of magnitude estimates takes
place in the estimators with the smallest areas (left sides of the graphs).

The application ofthe estimator shape and RHME criteria to the set of all possible estimators
reduces the number of estimators to those that should give acceptable estimates based on the
simulations discussed above. The number of estimators in each graph of Figure II are 4060,
2280, and 1879 from top to bottom, respectively. The application ofthe shape and RHME
criteria reduce the number of estimators to 56.2 and 41.7 percent of the original number,
respectively. The final result in the bottom image is noteworthy in that using only the estimators
that provide acceptable results, there are still three and a half orders of magnitude variation in the
estimated magnitudes of the hydraulic gradient for this region of the Culebra. This variability in
the results is due to heterogeneity within the Culebra causing higher and lower gradient
magnitudes in different locations.

A set of graphs similar to those in Figure lOis shown in Figure II for the orientation estimates.
The orientations are measured clockwise from north where north equals a zero degree
orientation. Similar to the magnitude estimates, the larger estimators produce estimates that
approach the regional estimate of approximately -173° as calculated above. However, there is
considerable variation in the orientation of the largest estimators between -150° and -180° and
there are also several large estimators that produce orientation estimates of approximately 170 (­
190t. All of the large estimators, those with sizes of I.OE+08m2 or larger, produce consistent
orientation estimates between the 2000 and 2003 sampling periods. Variations of the estimated
orientation of 20° or more can be seen for some of the three-point estimators with smaller areas.

Application of the acceptable estimator criteria developed through simulation reduces the
variability ofthe estimates from a somewhat uniform distribution (upper image, Figure II) to a
more bimodal distribution (lower image, Figure 11) with the modes centered on the -150° and
+165° orientations. There is also a relatively large number of estimates from small area
estimators between 60° and 90° for both time periods. Heterogeneity within the Culebra creates
this variability in the estimated orientations.
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Figure 11. Estimated orientation of the hydraulic gradient across all three-point estimators as a
function of estimator size for the 2000 and 2003 head data. The upper graph shows results for all
estimators, the middle graph shows results for those estimators meeting the shape criterion, and
the lower graph shows results for estimators meeting the shape and RHME criteria.

The final set of comparison graphs is shown in Figure 12. These graphs show the estimated
orientation as a function of the estimated magnitude. As noted previously (e.g., Silliman and
Frost, 1998), there can be strong relationships between the magnitude and orientation. Most
interestingly, magnitudes that are significantly larger than the regional magnitude may have
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orientations that are significantly offof the regional orientation. Silliman and Frost (1998)
attributed these results to areas of the aquifer where flow was crossing low-permeability regions;
however, they did not consider estimator shape or RMHE when interpreting their results.

Figure 12 (upper image) shows that the Culebra does exhibit coupled estimates of magnitude and
orientation that are both significantly offof the regional values. The largest magnitudes in this
figure are oriented at both 90° and -90° and are fairly consistent from 2000 to 2003. Application
ofthe shape criterion to these results (Figure 12, middle image) shows that the majority of these
estimates along the +/- 90° orientations are spurious and due to extremely tall or flat three-point
estimators. The majority of the estimators that meet the shape criterion show a reasonably
uniform distribution of magnitudes near the 155° and -155° orientations observed in Figure 12
with the largest magnitudes occurring at 135°,75°, and _135° as well as a few at 90 and -90°.

Application of the RHME criterion to these data results in the removal of all but four pairs of
estimated magnitudes greater than 0.1 and causes the majority of the remaining estimates to be
clustered near 150° and -150° (Figure 12, bottom image). Additionally, there are some results
trending towards higher magnitudes for orientations between 150° and 60° and -150° and _90°.
Almost all of the remaining estimates have magnitudes between 0.001 and 0.01, and the largest
change between 2000 and 2003 occurs in areas where the gradient is the smallest.
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Figure 12. Estimated orientation of the hydraulic gradient as a function of estimated magnitude
for the 2000 and 2003 head data. The upper graph shows results for all estimators, the middle
graph shows results for those estimators meeting the shape criterion, and the lower graph shows
results for estimators meeting the shape and RHME criteria.
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In addition to the series ofplots presented in Figures 10, II and 12, the direct differences in both
the magnitude and orientation of the gradient between any two time periods can be determined
for every estimator. Cumulative distributions of the absolute values of the differences in the
orientation and magnitude of the gradient between August 2000 and August 2003 are presented
in Figure 13 for all three sets of estimators. The absolute values of the differences are shown in
order to better display the range of variation.

The distribution ofthe absolute values of the differences in the magnitude ofthe gradient (Figure
13, top) shows that the vast majority of the differences are less than the value of the regional
gradient (1.6E-03). Roughly 95 percent of the differences in the orientation are less than 10
degrees between the two time periods. As the shape and RHME constraints are applied to the
estimators, the variance of the distributions decreases. This is due largely to the estimators that
produce the extreme differences being removed from the data set, although some very large
differences do remain even after both criteria are applied. The root cause of these differences
can now be examined in the field. In the future, the results produced by the three-point
estimation calculations could be used to determine if the extreme differences in magnitude
and/or orientation are all from estimators that have one or two wells in common. If so, changes
in monitoring practices at these wells, or local changes in the Culebra hydrology such as nearby
potentially leaky brine injection wells can be identified.
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3.5 Application 2: Long-Term Monitoring Network Design
There are two questions to be answered in the design of a long-term monitoring network that is
an extension of an existing monitoring network: 1) Can any wells be removed from the current
network with no, or very little, impact on the ability of the network to detect and characterize
changes in the hydraulic gradient? and 2) Where are the best locations to add wells to the
network in order to increase the ability of the network to detect and characterize changes in the
gradient? Both of these questions are examined using the three-point estimators.

The August 2003 head data, second from right column of Table 3, are used for the well removal
and addition calculations as they represent the more recent set ofmonitoring network
observations. The magnitude and orientation of the regional gradient as calculated by the best-fit
method for the August 2003 heads (Table 8, bottom row) are used in the calculation of the
RMHE for the well removal and addition study. The shape and RMHE constraints used
previously are also applied to the well removal and addition calculations.

3.5.1 Removal of Existing Monitoring Wells
Wells can be removed one at a time from an existing network and the resulting number of
acceptable three-point estimators can be determined from the remaining wells. This calculation
has been completed three times and the results are in Tables 9, 10, and 11. The three
calculations are done with the original 3D-well network, a 28-well network where WIPP-12 and
WIPP-22 have been removed, and a 26-well network where WIPP-12, WIPP-22, H-12, and P-17
have been removed. The same constraints on estimator shape and RHME as discussed in the
previous section are also applied to these calculations. The August 2003 observations result in
1879 acceptable estimators. This number is slightly different from the 1861 acceptable
estimators calculated above using the average ofthe 2000 and 2003 regional gradient values.

If there were no constraints on the shape or RMHE of the estimators, 30 wells would produce
4060 unique three-well combinations. Removal of a single well would decrease this number to
3654 (Equation 12), a drop of406 three-well combinations. Therefore, the maximum possible
reduction in the number of acceptable triangles is 406. For this maximum reduction to occur, the
removed well would have to have been included in every acceptable estimator, which will
certainly not be the case. The corresponding number for the 28-well case is 3276 possible well
combinations, and removal of a single well would decrease the possible number of combinations
to 2925, a drop of35l possible combinations. The 26-well network can produce 2600 possible
combinations of three wells, and removing a single well from this network decreases this
possible amount by 300 to 2300.

Results ofthe well removal calculations are shown in Tables 9, 10, and 11. For the case of the
original 3D-well network, a total of 23 different wells are removed, one at a time, and the
remaining numbers of acceptable estimators are determined. Not all of the original 30 wells are
removed for these calculations. The WQSP wells must remain in the network because they also
serve as the water quality monitoring network. Additionally, one ofthe wells on the H-19
hydropad will likely remain in the gradient monitoring network for the foreseeable future
because ofthe longevity ofthe fiberglass casing used at that location. The minimum drop in the
acceptable number ofestimators when one well is removed is 113 and the maximum decrease is
261 combinations (Table 9). These values are -5.0 and -12.9 percent decreases from the number
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of acceptable estimators when all 30 wens are used in the calculations. Across all wells, removal
of a single well results in decreases in the number of estimators that are between 28 and 64
percent of the theoretically possible maximum decrease.

The results in Table 9 indicate that removal of either the ERDA-9 or WIPP-21 wells would have
the smallest impact on the gradient-monitoring network. Removal of the WIPP-19 or WIPP-22
wells would have only slightly greater impacts on the gradient monitoring network. Wens that
would have the greatest impact on the gradient-monitoring network ifthey were removed are
WIPP-25 and H-7b2, with H-5b, H-12, and WIPP-30 having only slightly less impact on the
network.

Table 9. Decrease in the number of acceptable local gradient estimators due to removing one
wen at a time from the full (30-well) monitoring network

Removed Remaining Absolute Percent Percent of
Well Acceptable Decrease Decrease Maximum

Estimators Decrease
ABC-7 1650 229 -11.2 5604
DOE-I 1683 196 -904 48.3

ERDA-9 1765 114 -5.1 28.1
H-2b2 1722 157 -7.4 38.7
H-3b2 1736 143 -6.6 35.2
H-4b 1644 235 -11.5 57.9
R-5b 1625 254 -12.5 62.6
H-6b 1650 229 -11.2 5604

H-7b2 1620 259 -12.8 63.8
H-9b/c 1696 183 -8.7 45.1
H-IOb/c 1672 207 -10.0 51.0
H-11b4 1665 214 -lOA 52.7
H-12 1634 245 -12.0 60.3
H-17 1642 237 -11.6 5804
P-17 1653 226 -11.0 55.7

WIPP-12 1737 142 -6.6 35.0
WIPP-I3 1696 183 -8.7 45.1
WIPP-19 1752 127 -5.8 31.3
WIPP-21 1766 113 -5.0 27.8
WlPP-22 1757 122 -5.5 30.0
WlPP-25 1618 261 -12.9 64.3
WlPP-26 1650 229 -11.2 5604
WlPP-30 1634 245 -12.0 60.3

For the calculations done when WIPP-12 and WIPP-22 are already removed from the network,
the minimum drop in the acceptable number of estimators when one well is removed is 1I 1 and
the maximum decrease is 233 estimators (Table 10). These values are -5.9 and-13A percent
decreases from the number of acceptable estimators when the base case of28 wells is used in the
calculations. Across all wells, removal of a single well results in decreases in the number of
estimators that are between 32 and 66 percent of the theoretically possible maximum decrease.
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The results in Table 10 indicate that ifWIPP-12 and WIPP-22 are removed from the network,
then subsequent removal of either the ERDA-9 or WIPP-21 wells would have the smallest
impact on the gradient-monitoring network. Removal of the WIPP-19 or H-3b2 wells would
have only slightly greater impacts on the gradient monitoring network. Wells that would have
the greatest impact on the gradient-monitoring network if they were removed are WIPP-25, H-5b
and H-7b2, with H-12 and WIPP-30 having only slightly less impact on the network. All of
these results are consistent with the results from removing wells from the original 30-well
network.

Table 10. Decrease in the number ofacceptable local gradient estimators due to removing one
well at a time from the 28-well monitoring network where WIPP-12 and WIPP-22 have already
been removed.

Removed Remaining Absolute Percent Percent of
Well Acceptable Decrease Decrease Maximum

Estimators Decrease
ABC-7 1414 202 -11.5 57.5
DOE-l 1448 168 -9.4 47.9

ERDA-9 1505 111 -5.9 31.6
H-2b2 1473 143 -7.8 40.7
H-3b2 1487 129 -7.0 36.8
H-4b 1414 202 -11.5 57.5
H-5b 1390 226 -13.0 64.4
H-6b 1410 206 -11.7 58.7

H-7b2 1385 231 -13.3 65.8
H-9blc 1448 168 -9.4 47.9

H-lOblc 1432 184 -10.4 52.4
H-l1b4 1433 183 -10.3 52.1

H-12 1397 219 -12.6 62.4
H-17 1410 206 -11.7 58.7
P-17 1416 200 -11.4 57.0

WIPP-13 1440 176 -9.9 50.1
WIPP-19 1491 125 -6.7 35.6
WIPP-21 1503 113 -6.0 32.2
WIPP-25 1383 233 -13.4 66.4
WIPP-26 1409 207 -11.8 59.0
WIPP-30 1401 215 -12.3 61.3
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For the calculations done when four wens are removed from the original network (WIPP-12,
WIPP-22, H-12 and P-17), the minimum drop in the acceptable number ofestimators when one
subsequent well is removed is 82 and the maximum decrease is 191 wells (Table II). These
values are -5.7 and -14.7 percent decreases from the number of acceptable estimators when the
base case of 26 wells was used in the calculations. Across all wells, removal of a single wen
results in decreases in the number of estimators that are between 27 and 64 percent of the
theoretically possible maximum decrease.

The results in Table 11 indicate that ifWIPP-12, WIPP-22, H-12, and P-17 are removed from the
network, then subsequent removal of either the ERDA-9 or WIPP-21 wells would have the
smanest impact on the gradient-monitoring network. Removal of the WIPP-19 or H-3b2 wells
would have only slightly greater impacts on the gradient monitoring network. Wells that would
have the greatest impact on the gradient-monitoring network if they were removed are WIPP-25,
H-5b, H-7b2, H-17, and WIPP-30. These results are consistent with the previous results shown
in Tables 9 and 10.

In all three cases, ERDA-9, WIPP-21, WIPP-19, and H-3b2 are the least important wells and
WIPP-25, WIPP-30, H-5b, and H-7b2 are the most important wens when wells are removed one
at a time from the different base case networks. The results also indicate that H-12 would be an
important well to replace should it be lost from service.

Table 11. Decrease in the number of acceptable local gradient estimators due to removing one
well at a time from the 26-well monitoring network where WIPP-12, WIPP-22, H-12, and P-17
have already been removed.

Removed Remaining Absolute Percent Percent of
Well Acceptable Decrease Decrease Maximum

Estimators Decrease
AEC-7 1052 164 -12.5 54.7
DOE-I 1076 140 -10.5 46.7

ERDA-9 1134 82 -5.7 27.3
H-2b2 1104 112 -8.2 37.3
H-3b2 1112 104 -7.6 34.7
H-4b 1046 170 -13.0 56.7
H-5b 1032 184 -14.1 61.3
H-6b 1038 178 -13.6 59.3
H-7b2 1028 188 -14.5 62.7
H-9b/c 1074 142 -10.7 47.3

H-I0b/c 1066 150 -11.3 50.0
H-lIb4 1058 158 -12.0 52.7

H-17 1029 187 -14.4 62.3
WIPP-13 1064 152 -11.5 50.7
WIPP-19 1117 99 -7.1 33.0
WIPP-21 1127 89 -6.3 29.7
WIPP-25 1025 191 -14.7 63.7
WIPP-26 1049 167 -12.7 55.7
WIPP-30 1032 184 -14.1 61.3
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3.5.2 Addition of New Monitoring Wells
To determine the best locations for new wells, an algorithm was developed to examine the
number of acceptable estimators that would exist given the addition of a new well at any location
within the domain. This calculation is conducted by locating a new well at every cell center on a
1OOx 100 m2 grid and then determining the number of acceptable estimators resulting from the
insertion of this new well. Because wells do not actually exist in these locations, the average
head resulting from 100 calibrated stochastic transmissivity fields (McKenna and Hart, 2003;
Beauheim, 2003) is used as the "measured" head at each potential well location. The 100-meter
grid used to define the potential well locations corresponds to the groundwater flow model grid
used in the calibration of the transmissivity fields (see Table 1). Again, the number of acceptable
estimators for the August 2003 data is 1879.

The addition of a new well to the existing monitoring network can only increase the number of
acceptable estimators. Without the shape or RHME criteria, the maximum possible number of
estimators from 30 wells is 4060 (Equation 12). The maximum possible number of estimators
from 31 wells is 4495, an increase of 435. If the additional well can be placed such that all
additional estimators created from that well meet both criteria, then the increase in the number of
acceptable estimators will be 435. This number serves as an upper bound on the possible
number of new estimators.

On average, addition of a new well to the Culebra network creates a total of 2137 acceptable
three-point estimators, or an increase of258 (14 percent), over the 1879 estimators created from
the existing network. The maximum number of acceptable estimators constructed from the
addition of a new well is 2195, or an increase of 316 (17 percent) over the existing well network.
The minimum number of acceptable estimators created with the addition of a new well is 1966,
an increase of87 (5 percent) over the current network. These increases range from roughly 20 to
73 percent of the maximum possible increase in the number of estimators of435.

The results of the well-addition calculations are shown as a map in Figure 14. Locations where
the addition of a well will increase the number of acceptable estimators the most are generally in
the areas surrounding the outside ofthe WIPP site. A well added in these areas can take
advantage ofthe large number of existing wells within the WIPP site to create estimators that
meet both the shape and RHME criteria. Exceptions to these areas are locations between the
WIPP site and locations where wells already exist. The areas ofhighest return do not extend all
the way to the edges of the domain because either the no-flow region restricts the number of
triangles that can be created or, in the NE comer of the domain the addition of a single new well
is not enough to create a large number ofnew estimators. The problem is not as great in the SE
comer ofthe domain as there are already existing wells closer to that comer of the domain. An
additional well within the WIPP site will produce the smallest increase in the number of
acceptable estimators as this area already has a large number of wells and the majority of the
estimators created by an additional well within this area will not be large enough to achieve the
necessary head drop to meet the RMHE criterion.
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Figure 14. Number of acceptable local gradient estimators for a single new well placed at any
location within the domain. The current network produces 1879 acceptable local gradient
estimators. The black crosses show the existing 30-well monitoring network. The contour is 25
estimators and the contour levels correspond to the levels identified in the color scale.

3.6 Local Gradient Estimation Summary
The ability oflocal gradient estimators consisting ofthree wells at unique locations to accurately
and precisely estimate the magnitude and orientation ofthe hydraulic gradient was examined
with respect to the RHME, the triangle shape, and the orientation ofthe hydraulic gradient
relative to the orientation of the three-point estimator. Head measurement errors were simulated
using Monte Carlo simulation and the results show that the unbiased measurement errors
produce unbiased (accurate) estimates ofboth the orientation and magnitude of the hydraulic
gradient. As would be expected, the precision of the estimated magnitude and orientation
decreases linearly with increasing measurement error, with the rate ofdecrease in the precision
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for the orientation estimates being roughly half of that for the magnitude estimates. The
measurement error can be cast as a proportion ofthe expected head drop across any three-point
estimator and is called the RHME. Across eleven different isosceles triangles all with the same
size (area) but covering a broad range of shapes (base to height ratios) those triangles with base
to height ratios between 0.5 and 5.0 produced the most precise estimates of the magnitude and
orientation of the hydraulic gradient for four different levels ofRHME.

Two criteria for selection of acceptable three-point estimators were developed from the results of
the Monte Carlo simulations: 1) Triangles need to be large enough to allow for a RHME of 0.02
or less; and 2) Triangles must have base to height ratios between 0.5 and 5.0. These two criteria
were applied to the existing Culebra head monitoring network in the vicinity of the WIPP site.
Application ofthese two criteria to the three-point estimators in the Culebra results in 1879
acceptable estimators relative to a total of 4060 possible estimators. Application ofthese criteria
reduces the range of estimated hydraulic gradient magnitudes by at least an order ofmagnitude
and significantly changes the distribution of estimated orientations relative to when all possible
three-point estimators are used to make the estimates. These results indicate that estimator size
is not necessarily a good indication of the accuracy of the magnitude and orientation estimates
provided by the three-point estimator and that accurate estimates can be obtained from smaller
triangles.

The three-point estimators that meet the RHME and shape criteria are used in two different
applications ofmonitoring network design for the Culebra. Changes in the estimated magnitudes
and orientations of the local gradients over a three-year time period range from essentially zero
to I E-Ol and 1700 respectively, although the majority ofthe magnitude and orientation
differences are less than 1.0E-03 and 100, respectively. In a future analysis, the estimators
responsible for the largest changes in magnitude and orientation could be identified and the wells
comprising those estimators could be examined for the causes of these large changes. The
possibility of doing this type of analysis points out the higher level of understanding that can be
gained from monitoring gradients rather than just monitoring heads. The comparison of the 2000
and 2003 heads shows a general rise in head during this time (Figure 2). The comparison of the
2000 and 2003 estimated magnitudes and orientations (Figures 10 through 13) uses the same 30
data points as used to detect changes in heads, but provides a much richer picture ofhow flow
conditions in the aquifer are changing during this time period relative to just examining head
changes.

The second application of the three-point estimators to monitoring network design determined
the two sets of existing wells that had the least and the greatest impact on the ability of the
network to estimate the magnitude and orientation ofthe hydraulic gradient. The number of
acceptable three-point estimators lost due to removal of a single well serves as a measure of the
reduction in the ability of the network to make accurate estimates of the magnitude and
orientation ofthe gradient. Three-point estimators have not been used previously for this type of
analysis and the results indicate that three-point estimators do an excellent job ofpreserving the
wells that uniquely provide coverage in certain areas and also in identifying wells that provide
redundant coverage. This approach demonstrated here can readily complement the more
commonly used variance reduction and data-worth approaches to long-term monitoring network
design. The decrease in the number of acceptable estimators due to the removal of a single well
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ranges between 5 and 13 percent of the current number of acceptable estimators depending on
which well is removed. A similar approach was used to determine the locations where an
additional well would have the greatest increase in the number of acceptable three-point
estimators. These calculations were done by placing a new well at every location on a 100xl00
m2 grid within the calculation domain and then assigning a head to the new well location that is
equal to the average head from an ensemble of previously calibrated groundwater flow models.
The percent increase in the number of acceptable three-point estimators due to a single new well
relative to the existing network ranges from 5 to 17 percent with an average increase of 14
percent. Mapping these results across the calculation domain shows that the best places for a
new well are in a nearly continuous circular band outside of the WIPP site with the areas within
the WIPP site producing the lowest increase in the number of acceptable three-point estimators.
The calculations for both existing well removal and the addition of a new well are done for the
removal/addition of a single well. Further calculations for the removal/addition of combinations
of two or more wells can be completed, but the possible combinations ofwell locations,
especially for the addition problem, are essentially infinite and other well placement criteria
would need to be used to constrain these calculations.

3.7 Assumption of Homogeneity
An implicit assumption in the use of the local gradient estimators to determine the orientation
and magnitude ofthe hydraulic gradient is that the aquifer material within any three-point
estimator (triangle) is homogeneous. For any aquifer, this assumption will not be met. Previous
work (e.g., Mizell, 1980) has shown that when the size ofthe triangle is much larger or much
smaller than the correlation length scale of the transmissivity, it is possible to invoke the
homogeneous assumption.

The homogeneity assumption was evaluated by selecting a series of 1879 triangles for which the
magnitude and orientation of the gradient could be evaluated. These 1879 triangles are a subset
of the total possible 4060 triangles that meet both the shape and RHME constraints (see Section
3.4). For each triangle, the head estimates are available at each of 100 calibrated transmissivity
fields (Hart and McKenna, 2003; subdirectories below /h/WIPPcvs/trans/runs/). These heads can
be used as input to a three-point estimator to estimate the magnitude and orientation of the
gradient 100 times for each triangle (187,900 total estimates of orientation and magnitude). This
ensemble of estimates can be compared directly with the estimates made from the field
observations of head using those same 1879 three-point estimators. Comparison of the estimates
ofmagnitude and orientation based on measured and model-generated heads are shown in Figure
IS. This comparison is made using just the mean results of all estimators as calculated across all
100 realizations.

The comparison in Figure IS shows that there is considerably less variation in the estimates of
both magnitude and orientation when the model-generated heads are used versus those measured
in the field. For example, considerably fewer magnitudes lie outside the 0.01 contour for the
model-generated heads (right image) compared to the field-based estimates (left image). From
Figure IS, it is not possible to determine if there is a significant change in the mean orientation
estimate between the field- and model-based results. The decrease in variation from the field- to
the model-based estimates can be due to incorrect representation of the true heterogeneity within
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the model as well as the averaging process. It is not possible to determine in exactly what way
the model incorrectly represents the heterogeneity, but certainly the use of IOOx 100 m2 cells in
the model will smooth out some of the true heterogeneity.

Well Data o Flow Dl,.c:tlon
Mean of Calculated Heads
at WeI LacaaoM o FI_ Direction

·180

Figure 15. Polar coordinate plots comparing the estimated orientation and magnitude of the
hydraulic gradient based on field measurements (left image) and model-generated heads (right
image). The magnitudes are shown on 10glO scale.

The question of the effect ofheterogeneity on the ability oflocal gradient estimators to
accurately estimate the hydraulic gradient is examined by discretizing each of the three-point
estimators as defined by the wells into a number of smaller triangles. For this work, each
triangle defined by the wells, "well triangle", was subdivided into smaller triangles, "grid
triangles", based on the underlying 100-meter grid spacing. This discretization is shown for an
example triangle in Figure 16. Each grid triangle is an isosceles triangle that fits in a 3x3 set of
grid cells. For the example in Figure 16,221 grid triangles fit within the example well triangle.
Details on the calculation and assignment of the different triangle sizes are given in Appendix 4.

The grid triangles are small enough such that they are only a fraction, less than or equal to 0.20,
of the transmissivity correlation length calculated by McKenna and Hart (2003) and therefore
should contain relatively homogeneous regions of the aquifer. The same local gradient
estimation techniques used for the data at the wells are also applied to the calculated heads at
each ofthe vertices of each smaller triangle. An average hydraulic gradient and orientation as
calculated across all grid triangles can then be compared to the same quantities as calculated
using the well triangle that contains all grid triangles. These averages are calculated as a straight
linear average and as a flux-weighted average where the total flux through each grid triangle
relative to the flux through the well triangle determines its weight in the average. If the average
magnitude and orientation of the gradient as calculated over all grid triangles is consistent with
the larger scale estimate made over the well triangle, then the triangles defined by the three wells
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are reasonable estimators of the composite gradient within them and heterogeneity becomes a
second-order effect.

A complication ofthis comparison approach is that there is not a single groundwater flow model
result from which to obtain head values from the grid triangles. There are 100 calibrated head
fields. Therefore, every one ofthe 1879 well triangles will have a distribution of 100 average
gradients as calculated over all of the grid triangles contained within that well triangle. These
distributions are calculated using the Median_HeadGrad program (Appendix 5) and compared
to the results ofthe gradient estimates calculated using the field observations in Figure 17
(magnitudes) and 18 (orientations).
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Figure 16. Example of discretizing a large triangle defined by wells with a number of smaller
isosceles triangles defined using the underlying 100-meter grid spacing.
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Figure 17. Estimates of the magnitude ofthe hydraulic gradient from the observed head values
at the wells and as unweighted (top) and flux-weighted averages (bottom) of the grid triangles
within each well triangle. The results are sorted by the mean values (not shown) and are
arranged from high to low magnitude and then each result is assigned an index for plotting.
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Figure 18. Estimates of the orientation of the hydraulic gradient from the observed heads values
at the wells and as unweighted (top) and flux-weighted (bottom) averages of the grid triangles
within each well triangle. The different estimators are assigned indices for plotting.

Figures 17 and 18 show several interesting patterns. For both the magnitude and orientation
estimates, the observed head data produce considerably more variation in the estimates than are
seen in the model output. This result is due to the model producing estimates with less
variability for any set of measurements as seen in Figure 15 and is also due to the distributions
shown in Figures 17 and 18 being distributions of averages across many small triangles not
distributions of estimates made from individual sets of observations. The model effect and the
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averaging both act to reduce the variation in the estimated values. The variation of the gradient
estimates from the observed data is due to measurement error and heterogeneity. As seen in
Figure 15, the numerical model smoothes the estimates of the magnitude and orientation relative
to estimates made directly from the field observations.

The choice of averaging algorithm for the grid triangles makes a large difference in the resulting
estimates ofthe magnitude ofthe gradient (note the decrease in estimated magnitudes when flux­
weighted averaging is used (Figure 17), but has little effect on the orientation estimates (Figure
18). Using the linear (unweighted) average produces relatively unbiased estimates of the
magnitude while using the flux-weighted averages shifts the model estimates to below those of
the field-based estimates. Prior to this set of calculations, the importance of incorporating the
flux into the averaging process was unknown and these results confirm that a simple unweighted
average of the smaller, grid, triangles provides the best estimates of the gradient magnitudes
made from the observed data. For either type ofaveraging, the orientation estimates produce
relatively unbiased estimates of the orientation obtained from the field observations.

A specific question to be addressed in this analysis is whether or not there is an estimator size
beyond which a triangle becomes so large that it cannot provide reliable estimates of the
hydraulic gradient on the WIPP site. This question cannot be answered directly as the true
gradient is unknown. However, the relationship between the average gradient estimated from the
small triangles enclosed by a well triangle and the gradient defined by the observed heads can be
determined. If this relationship is a strong function of estimator size, then there may be a point at
which an estimator becomes so large as to no longer provide an estimate ofthe gradient
consistent with the average calculated from the triangles enclosed within that estimator. The
difference between the median value of the average magnitude and orientation of each estimator
as determined by all grid triangles within the larger well triangle and the estimates of the
magnitude and orientation as defined by the well data are shown as a function of estimator size
in Figures 19 and 20.

The major result of this analysis as shown in Figures 19 and 20 is that the differences in the
magnitude and orientation of the hydraulic gradient as estimated from averages ofmodeled
heads in smaller internal triangles or from the observed head data at the wells are only a general
function of estimator size. In both Figures 19 and 20, trends of decreasing differences with
increasing estimator size can be identified. For example, absolute differences ofmagnitude
above 1.OE-02 only occur for estimators smaller than I.OE+07 m2 in the unweighted case (Figure
19, top image) and slightly less than 1.0E+07 m2 for the weighted case. In general, the larger the
estimator, the less difference there is between the gradient estimated from the observed heads
and the gradient calculated as an average of all the small, relatively homogeneous regions of the
aquifer within the estimator. However, the smallest absolute differences of all, those of 1.0E-04
or less, occur in a relatively uniform band between estimator sizes of roughly 8.0E+05 to
1.0E+08 m2

•
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Figure 19. Difference between the magnitnde of the hydraulic gradient as estimated from the
well observations and the median average estimated magnitude across 100 realizations as a
function of estimator size. The results of the unweighted averaging are shown in the top image
and the flux-weighted averaging results are shown in the lower image.
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Figure 20. Difference between the orientation of the hydraulic gradient as estimated from the
well observations and the median average estimated orientation across 100 realizations as a
function of estimator size. The results of the unweighted averaging are shown in the top image
and the flux-weighted averaging results are shown in the lower image.
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In order to monitor the gradient across the WIPP site, three-point estimators could be used that
are, at the minimum end, contained completely within the WIPP site and at the maximum size
extend beyond the WIPP site boundaries. As a frame of reference, a three point estimator using
wells at the center of the panel area and the two southern comers of the WIPP site would have an
area ofroughly one-fourth the WIPP site or 1.05E+07 m2

. An estimator ofthis size would fall
nearly in the middle ofthe range of lowest values of absolute differences in observed vs.
modeled gradient magnitudes (Figure 19). Using Figure 19 as a guide, the estimator could be a
factor of four to five times larger than this and still provide consistent results between the
modeled and observed magnitudes. Estimators smaller than this can provide consistency
between modeled and observed gradient magnitudes, but the maximum difference between
modeled and observed results increases as the estimator size decreases. This size of an estimator
corresponds to a wide range of differences between modeled and observed orientations (Figure
20). Increasing the size of the estimator beyond that ofone-half the WIPP site decreases the
differences between modeled and observed orientations (Figure 20).

Given the results in Figures 19 and 20, the upper limit on estimator size appears to be
approximately IE+08m2

, or two and halftimes the size of the WIPP site. The lower limit, using
a absolute difference of 1.0E-02 in the unweighted gradient magnitudes (Figure 19, upper image)
as a threshold, is approximately 5.0E+06 m2

, or 8 times smaller than the WIPP site. Estimators
within this range of sizes that are either fully contained within the WIPP site boundaries or
contain a large portion of the WIPP site within the three wells can be expected to provide good
estimates of the magnitude of the gradient across the WIPP site. Based on these same
calculations, good estimates of the orientation of the gradient can be made with estimators that
are the size of the WIPP site, 4.3E+07m2

, and larger.

These calculations show that model-based estimates of the hydraulic gradient are considerably
less variable than those made with field data. While heterogeneity plays a role in the amount of
variability from the field estimates, in general across all triangles, the correct orientation and
magnitude of the hydraulic gradient can be determined. These calculations show that the
estimate of the hydraulic gradient as determined from three wells in a triangle is a good estimate
of the gradient when calculated as an average ofmany small local gradient estimates across
relatively homogeneous domains within that larger triangle. In other words, the average of a
number of estimates on small, relatively homogeneous pieces of the aquifer is well approximated
by the larger scale calculation done over the heterogeneous piece of aquifer. The larger the
estimator, the better the degree ofapproximation.

From the opposite perspective, ifthe monitoring goal is to accurately determine the local-scale
gradients over a smaller portion of the Culebra, such as the southern end of the WIPP site, large
triangles will not be capable of determining this local scale variability in magnitude and
orientation. Figures 19 and 20 show that for a triangle of 1.05E+07m2

, one-fourth of the WIPP
site area, there is a three order ofmagnitude variation in the gradient magnitude and a nearly 360
degree range in orientation. Not all ofthis variability will occur within the southern end of the
WIPP site as there are many triangles of this size throughout the monitoring network, but it can
be concluded that the largest triangles will not provide the detail necessary to monitor gradient
magnitudes and directions over a portion of the WIPP site.
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3.8 Calculation Details
The first set of calculations done in this section was completed to develop a relationship between
the absolute head measurement error and the error in the estimated magnitude and orientation of
the hydraulic gradient. These calculations are done using the RHME code. The code is tested in
the Monitoring_04\Test_Problems IRHME_testI subdirectory on the CD-ROM that is part of this
analysis package. A summary ofthe test problem and results are included here as Appendix 6.
The RHME code is then used to create the data that are the basis for Figure 6. These calculations
are done in the Monitoring_04IRHME_ealesl subdirectory. The final results are contained in the
mserr ####.out files where #### denotes the value ofRHME and are also stored and processed- .

in the rhme eales.xls file.

The effects of estimator shape and orientation of the gradient on the ability of the estimator to
produce accurate estimates ofthe hydraulic gradient are calculated using the main code. The
main code is tested in the IMonitoring_04\Test_Problemslshape_testl subdirectory and a
summary of this testing is included as Appendix 7. The calculations are done in the
IMonitoring_04\shape_cales subdirectory. For each of the II triangle shapes as defined in
Figure 7 there is a single input file. The naming convention for the input files is ##Cases. txt
where the ## defines the size of the two equal angles in the triangle in degrees. A set of 2000
calculations is done on each of24 gradient orientations for a specified value ofRHME (set as
ERR_TO_DROP in the main code). Each set of these 48,000 calculations is contained in a
single output file and there are a total of II output files for each value ofRHME, one for each
estimator shape. The naming convention for the output files is mserr##_$$$$.out where the ##
defines the shape of the triangle as given in Figure 7 and $$$ defines the value ofRHME.

The output files are read into a series of Excel files, one for each estimator shape, that have the
naming convention of ##.xls where the ## defines the shape of the estimator. Each of these
Excel files contains all the output for a given triangle shape across all four values ofRHME.
Additionally, the 95th percentiles of the distributions for each orientation ofthe gradient and each
level ofRHME are calculated in a separate worksheet in the file. At the bottom of these
worksheets, the mean and median values of the 95th percentile across all 24 directions are
calculated. These median values are then summarized for all shapes in the file
Msmt_error_summary.xis.

The removal of a single well from the network and the recalculation of the number of acceptable
three-point estimators are calculated with the estimateJemove code. This code is tested on a
six and then five well configuration in the IMonitoring_04ITest_ProblemslRemove_test
directory. The results of this testing are summarized in Appendix 8. The same code is used for
the Culebra calculations in the IMonitoring_04\Removal\ subdirectory. Several modifications
are made to the estimateJemove. epp file prior to recompiling it and running it on the Culebra
problem. These are a change ofthe loop limit on line 65 from 2 to 24, removal of the comment
marks on lines: 128, 134, 135, 136, 142 and 143 to activate the base to height ratio criteria and
the RHME criteria for the Y component of the gradient, and addition ofthe correct input and
output file names to the switch statement at the bottom of the file. These changes are readily
apparent by comparing the file estimateJemove.epp in both the
IMonitoring_04ITest_ProblemslRemove_test and IMonitoring_04lRemoval subdirectories. This
same code is used to look at the case of first removing WIPP-12 and WIPP-22 and then every
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well in order in the lMonitoring_04lRemoval_3 subdirectory. In order to not modity the code,
the input and output file names are kept the same as in the original run in
lMonitoring_04IRemovai subdirectory. Each original input file is modified to remove the lines
with the WIPP-12 and WIPP-22 information. The WIPP-12 and WIPP-22 output files are
ignored. The number of triangles is the number of lines in each output file minus one for the
header line. The same approach is used for the case where the WIPP-12, WIPP-22, H-12, and P­
17 wells are removed prior to all other removals. These calculations are in the
IMonitoring_04lRemoval_5 subdirectory.

The well addition calculations are made using the locat code. This code is tested using a lOx10
grid ofpotential well locations in the IMonitoring_04ITestyroblemsladd_testl subdirectory. A
summary of this testing is included in Appendix 9. The same code is used for the Culebra
calculations in the lMonitoring_04!locat_triangle! subdirectory with some modifications. Lines
223,231,232,233,237 and 239 are uncommented and the input and output file names in the
switch statement at the bottom of the file are changed to Aug_2003_wells. in and
Aug_2003_wells.out, respectively, for the Culebra calculations. These changes are readily
apparent by comparing the locat.cpp file in the IMonitoring_04 ITestyroblemsladd_test\ and
lMonitoring_04\locat_triangle\.
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4.0 Spatial Sensitivity-Based Monitoring

In addition to the variance reduction and local gradient estimator approaches to monitoring
network design, a third approach is also examined to directly incorporate uncertainty in the
performance assessment into the monitoring network design. These calculations also incorporate
recent updates in the geologic conceptual model and the influence of these updates on the spatial
distribution of transmissivity within the Culebra. These recent updates in the geologic
conceptual model have been used to produce the base transmissivity fields used in this study and
are documented by Holt and Yarbrough (2003).

4.1 Background

Spatial sampling design is concerned with locating samples such that variations in state variables
and/or material properties can be accurately mapped. In an aquifer, these state variables are
typically hydraulic head or contaminant concentration. Traditional approaches to spatial
sampling design have focused on either increasing the probability of detection of an object(s)
with a prescribed shape and size (Gilbert, 1987) or locating samples to minimize the variance of
the prediction error in the sampled property (Burgess et aI., 1981; Olea, 1984; Rouhani, 1985;
Tuckfield et aI., 2001) as was done in the first section of this report. While there are numerous
variations on these approaches, they can all be considered as techniques that add samples to
minimize the limitations of the current data set where these limitations are defined through easily
calculated geometrical and/or spatial covariance-based relationships.

Another approach to the sample optimization involves heavy use of numerical simulation and
has been applied mainly to the development ofmonitoring networks for efficient detection of
groundwater contamination downstream of an existing disposal site. Work in this area includes
optimization of future well locations based on those that provide maximal data worth (James and
Gorelick, 1994; Wagner, 1995), where "worth" is quantified in monetary terms, or locations that
meet other objectives such as finding networks that simultaneously minimize network cost,
maximize probability ofdetecting a contaminant leak and minimize the extent of the
contaminant distribution at first detection (Meyer et aI., 1994; Storck et aI., 1997).

More recent works in spatial sample design have begun to consider the sensitivity of a model
output to the estimates of one or more heterogeneous state variables and/or the influence of the
model acting on the spatially heterogeneous material properties. Spatial variability in material
properties, such as transmissivity, leads to variations in the influence of any location within a
model domain on the model results. For simple models of variability with few parameters
governing the distribution of material properties, analytical techniques, such as Taylor series
expansion, can be used to determine the sensitivity of the model output to the material property
parameters. Work in this area has examined the sensitivity ofmechanics models to the spatially
discrete distribution of soil properties for geotechnical applications (Graettinger and Dowding,
2001). This approach has recently been extended to properties that vary continuously in space
through the incorporation of kriging variance in the sensitivity calculations (Supriyaslip et aI.,
2003).

68



 

 Information Only 

However, depending on the scale ofthe problem, the variation in many material properties may
not be adequately described by simple assignment ofhomogeneous properties within predefined
zones (Hill et aI., 2001) and are better characterized as spatial random variables (SRV's). For
these types ofmaterial properties, Monte Carlo sampling of the spatial random function can be
employed. Here we propose a new approach for the calculation of spatial sensitivity coefficients
based on the results of an ensemble of stochastic models. In contrast to previous work involving
spatially varying sensitivity that has employed derivatives to determine sensitivities, the
sensitivity values calculated herein rely on sampling-based sensitivity values (Helton and Davis,
2000). This work compares input parameter values to model outputs using rank regression as a
sampling-based measure of sensitivity.

The goal ofthis portion ofthe report is to propose and demonstrate a new approach to
monitoring network design that will specifically address the PA monitoring network design goal
ofproviding head data for defensible calibration of PA models. Additionally, the approach
developed here specifically incorporates PA information in the form of groundwater travel times
from the repository area to the boundaries of the WIPP site. This approach makes use of the
already existing ensemble ofcalibrated transmissivity fields (McKenna and Hart, 2003) such that
no additional groundwater flow and/or transport modeling is necessary.

4.2 Derivative-Based Sensitivity Coefficients
The goal of this work is to develop a technique determining the sensitivity of a model output
with respect to all uncertain inputs. While such an approach is generally applicable, the focus
here is on spatially varying model inputs. Typically, sensitivity coefficients, S, are calculated as
the derivative of a model output with respect to each input parameter:

S.. = 80;
if 8P.

}

(14)

where Sij is the sensitivity of the ilh model output, Oi, to the/h model parameter, Pj . For models
with a linear relationship between the input parameters and the output, values ofS can be
calculated directly. For models with non-linear relationships between the parameters and the
outputs, a Taylor series expansion of the derivative is used to linearize the relationship and
sensitivities (see Graettinger and Dowding, 2001). The Taylor series expansion approach is
limited to a relatively small number of model parameters and may entail some specific
assumptions (e.g., Gaussian distributions) on the uncertainty inherent in the model.

4.3 Sampling-Based Sensitivity Coefficients
Another approach to sensitivity calculation that is used heavily in probabilistic modeling is
sampling-based sensitivity (Helton and Davis, 2000) where regression models are used to define
relationships between model inputs and outputs. The spatially heterogeneous distribution of
material properties is modeled as the realization of an SRV. While the values of the actual
realization are only known at the sample locations, multiple conditional realizations of the SRV
can be drawn from a specified spatial random function (SRF). A two-point spatial covariance
model is used to define a spatially correlated, conditional, N-variate conditional cumulative
distribution function (ccdf) ofthe N SRV's, Z;. The multivariate ccdfs, F (N), are defined as:
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F(N) = (ZI, .. " zNI(n)) = Prob{Z; sZ;, i=l, .. .,NI(n)} (15)

where Zi are the values sampled from SRV and In indicates the set ofn data used to condition the
N SRV's. The N variables represent the same attribute (e.g., transmissivity) sampled at the N
nodes of a dense grid used to discretize the model domain.

Stochastic simulation algorithms are used to sample these ccdfs where one set of samples results
in a single spatially correlated property field (realization). Repeated application of these
algorithms creates an ensemble of equally probable random fields that reproduces the first and
second (bivariate) moments ofa specified distribution under an assumption of second-order
stationarity. Details of the stochastic spatial simulation algorithms can be found in the works of
Goovaerts (1997) and Deutsch and Joumel (1998). This ensemble of random fields is used as
input to a physical process model (e.g., groundwater flow). For each application of the physical
process model, a prediction of some performance measure is produced. The performance
measure is the result of the integrated response of that physical process across the joint
distribution ofthe sampled ccdfs. Across the full ensemble ofmaterial fields, the physical
process model acts as a transfer function to transfer the uncertainty in the spatial distribution of
material properties to uncertainty in the resulting physical process.

The empirical distribution of simulated values at any location, x, within the model domain across
multiple realizations amounts to repeated independent samples ofthe local ccdf. The actual
distribution ofF(N,x) changes from one realization to the next, but across all L realizations a
local ccdf, F(Nx.!) is defined. Each independent sample ofF(N.x./) defines the property value of a
single model cell in a single realization and therefore is associated with a single model output.
All model cells in a given random field, I, are associated with the same model output 0/. Across
the ensemble of all realizations, sensitivity of the model output to the property values at each
location within the domain can be computed with sampling-based sensitivity techniques (Helton
and Davis, 2000). Here we examine the ability of the Spearman rank correlation coefficient (see
Conover, 1980) calculated for each location in the model domain, r(x)" to identify changes in 01
with respect to changes in the values drawn from F(N.x./). The Spearman rank correlation
coefficient is:

"L (R; - R)(S(X)i - S(x))
i-I

"
L(Ri-R)'
i=l

"L (S(x); - S(x))'
j=!

(16)

where R and S are the internal ranks of 0/ and the values contained in F(N,x,!) respectively, and
define the sensitivity of the integrated model output to each ofthe locally sampled property
values. The value ofr(x)s defines the proportion of the variability in 0 1 explained by F(N",.I) and
can be displayed as a map across the model domain for all locations.
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4.4 Application to Culebra Calculations
Detennination of r(x), across an ensemble of stochastic transmissivity fields is applied to the
results of groundwater flow and advective transport models that use heterogeneous,
stochastically-generated transmissivity (T) fields as input. Calculations of spatial sensitivity
coefficients developed here are provided to detennine the locations to which the groundwater
flow model calibration is most sensitive to the simulated value ofT and to simulated head
values. These sampling-based sensitivity coefficients, calculated as r(x)" are compared to
sensitivity coefficients calculated as partial derivatives of the model calibration (Equation 14) to
the T value through a Taylor series approach at 99 selected locations. In addition to mapping the
sensitivity of the model output to the spatially variable T, the spatial sensitivity of the model to
the single state variable, pressure, is also detennined.

Results of the previously completed transmissivity field calibration (McKenna and Hart, 2003)
are used to compare analytically calculated sensitivity coefficients with the sampling-based
sensitivity coefficients. For this comparison, the sensitivity of the overall calibration is
calculated with respect to the estimated transmissivity values at each pilot point. The 100
transmissivity fields were created through a stochastic inverse modeling procedure where 99
pilot points distributed throughout the domain were considered to be the design variables in the
inversion process (McKenna and Hart, 2003). The selection of the 100 fields used in this study
was done by Beauheim (2003). For each pilot point, the inverse parameter estimation procedure
calculates the sensitivity of the overall objective function to the estimated values of each pilot
point. In the Culebra stochastic inverse modeling, the overall objective function was composed
of both the mismatch between the modeled and measured heads, including both steady-state
heads and drawdowns observed during a number of transient pumping tests, as well as the
regularization function that forced the pilot point values to be as similar to each other as possible.
The sensitivities of the value of the objective function with respect to the estimated values of the
pilot points can be compared to the sampling-based sensitivity coefficients at the same locations.

The sensitivity coefficients for each pilot point are calculated as the relative composite
sensitivity (Doherty, 2000):

( 'Q )112
Sed = J J ii .Ipl

If m ) (17)

where J is the Jacobian where each column is composed of entries ofnumerically calculated
sensitivities of each parameter to each of the m observations. Q is a diagonal cofactor matrix
containing the weights assigned to each observation and Pj is the final estimated value of the lh
parameter. For the Culebra transmissivity field calibrations, the quantity estimated at every
location was the residual between a base transmissivity value estimated from a geologic
conceptual model and a response surface that was conditioned to the actual transmissivity
measurements at the well test locations (McKenna and Hart, 2003). Both the base transmissivity
field and the response surface were defined in units ofloglO (m2/s) and therefore the estimated
residual values also have units ofloglO (m2/s).
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The sampling-based sensitivity coefficients are detennined using all 100 transmissivity fields,
whereas the relative composite sensitivity coefficients are calculated separately on each
calibrated transmissivity field. To facilitate comparison of the two types of sensitivity
coefficients, the average value of Sure! is calculated across alii 00 transmissivity fields.
Additionally, the calculation ofSa"! uses the absolute value of the parameter as estimated in
log10 space, so these values are compared to the absolute values of the sampling-based
sensitivity coefficients. The comparison between the two types of sensitivity coefficients is
shown in Figure 21.
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Figure 21. Comparison of sampling-based sensitivity coefficients to the median ofthe
analytically calculated sensitivity coefficients. Both sets of coefficients define the sensitivity to
the overall model calibration with respect to the estimated head at 99 different locations.

The comparison of the two types of sensitivity calculations shows that while there is a weak
positive correlation there is not strong one-to-one relationship between the two types of
sensitivity coefficients. This is expected as the composite sensitivities are calculated analytically
on each realization and then the mean over all realizations is taken, whereas each sampling-based
sensitivity is calculated using results across all realizations as input. However, it is not the direct
relationship between the two quantities that is most important. Analysis of either quantity should
be able to identify areas of relatively higher and lower sensitivity of the calibration to the
transmissivity field. Comparison of the correlation between the ranks of the two different
quantities shows a correlation coefficient of0.67, indicating moderate correlation between the
ranks of the two different sets of sensitivities.

72



 

 Information Only 

Advantages of the sampling-based sensitivity coefficients over the composite sensitivity
coefficients are: I) that they are calculated at all locations in the model domain; and 2) they can
be calculated after the groundwater model calculations with respect to any model output. These
advantages are demonstrated in Figures 22 and 23. Figure 22 shows the sensitivity of the model
calibration to the simulated heads at all locations in the domain. This relationship was not
calculated using the composite sensitivities but done as a post-processing step on the model
results. Figure 23 shows the sensitivity of the overall model calibration to the transmissivity at
all locations. This map shows the same relationship calculated with the composite sensitivities at
the 99 pilot points, but done at all locations using the sampling-based sensitivity coefficient
approach. The circular lines seen in Figure 23 are due to the circular updating pattern extending
out from each pilot point. These lines are most apparent in the high T and low T regions on the
west and east of the site, respectively, where the pilot point density is lower.

For the sensitivity of the model calibration to both head and transmissivity, the results show
higher sensitivity to the head solution than to the transmissivity values. The map of sensitivity of
the model calibration with respect to head shows large, spatially continuous regions ofpositive
and negative sensitivity (Figure 22). These results are due to the diffusive nature ofthe pressure
solution. The sensitivity of the model calibration to the transmissivity values (Figure 23) shows
more localized regions of high and low sensitivity. These results are due to the more complex
and local relationship between transmissivity and the simulated head values. Comparison of
Figures 22 and 23 shows that locations of high sensitivity with respect to transmissivity are not
necessarily collocated with locations of high sensitivity with respect to head.
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Figure 22. Sampling-based sensitivity of the overall steady-state and transient calibration to the
simulated head values.
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Figure 23. Sampling-based sensitivity of the overall steady-state and transient calibration to the
calibrated transmissivity values.

4.5 Results
The calibration of the 100 transmissivity fields to steady-state and transient heads did not
incOIporate the groundwater travel time as an estimation variable. The groundwater travel time
was a separate calculation done after the transmissivity fields were calibrated; therefore, the
sensitivity of the groundwater travel time to either heads or transmissivity cannot be calculated
using the composite sensitivity calculation (Equation 17).

The sampling-based sensitivity approach was applied to the results of the 100 calibrated
transmissivity fields and used to determine the sensitivity of the groundwater travel time to the
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WIPP boundary with respect to both the simulated heads and the calibrated transmissivity values.
The results of these calculations are shown in Figures 24 and 25, respectively. The wells shown
in Figures 24 and 25 are the set of 30 monitoring wells used in the previous monitoring network
design calculations; it is important to note that these are not necessarily the same wells that were
used to calibrate the transmissivity fields. A map showing each of the 100 paths along which
travel time was calculated is shown in Figure 26 as a reference for the discussion below.

The results show that the magnitudes of the correlation coefficients are not very large, signifying
weak to moderate correlation, both positive and negative, between the travel time to the WIPP
boundary and the heads and transmissivities used to calculate those travel times. However, the
results clearly show regions of relatively higher and lower travel time sensitivity to the two input
parameters. The map showing sensitivity of travel time with respect to head (Figure 24) shows a
much more smoothly varying image of sensitivity than does the map of travel time sensitivity
with respect to transmissivity (Figure 25). These results are consistent with the diffusive
relationship between head potential field and travel time and the much more focused and short
spatial scale advective relationship between transmissivity and travel time.

There are two main regions of the site where the travel time is most sensitive to the value of
estimated head. These are the large positive region to the south ofthe western portion of the site
and the smaller negatively correlated region located in the WIPP site and extending out to the
west of the WIPP site. Intuitively, the positive correlation south of the site is the result of
increased head south of the site decreasing the relative gradient and therefore increasing the
amount of time it takes for water to flow off-site. It is interesting to note that this high
correlation region does not extend across the entire domain to the east. This appears to be due to
only a few travel paths exiting the southern WIPP boundary on the east side (Figure 26).

The region ofnegative correlation within and to the west of the site (Figure 24) defines an area
where increases in head result in shorter travel times and vice versa. This region is interpreted as
locations that both change the timing and the direction of the flow paths out of the WIPP site,
although there is no clear visual relationship between this region and the locations of the paths
leaving the WIPP site.
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Figure 24. Sampling-based sensitivity of travel time to the WIPP boundary with respect to
simulated heads.

For the sensitivity with respect to transmissivity (Figure 25), the location with the strongest
correlation (negative) is just south of the center of the southern WIPP site boundary. Low
transmissivity values in this location result in long travel times and vice versa. This area of
negative correlation is coincident with a high density of flowpaths (Figure 26). There are several
small regions of relatively high positive correlation throughout the domain. Two of these are
near the extreme boundaries of the domain. At the north end, a small area serves to connect the
high-T zone down the west side of the domain to the northern fixed-head boundary condition.
The higher the T in this zone, the more flux goes down the western edge and avoids the WIPP
site resulting in longer travel times. At the southern end of the domain, there is a relatively large
region ofhigh correlation that has some positive relationship with the travel time to the WIPP
site boundary. The cause of this increased correlation has not been identified. The relatively
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high correlation regions to the west of the WIPP site provide a connection between the high-T
zone and the WIPP site. When T is high in these regions, travel time is longer and the
interpretation is that flow path directions are altered to provide longer travel times with this
influx of water into the WIPP site region. The uncolored regions in the east and northeast
regions ofFigure 25 identify locations where transmissivity never changed across the 100
realizations. These areas are in the low transmissivity zone on the east side of the domain and
are far from any pilot point. No changes in the transmissivity make it impossible to calculate the
rank regression coefficient for these areas.
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Figure 25. Sampling-based sensitivity of the travel time to the WIPP boundary with respect to
calibrated transmissivity values.

It is noted here that identification of areas to increase knowledge ofT pertains more to site
characterization activities and is not directly a concern in long-term monitoring. However, T
enters the PA calculations as the parameter that is optimized during the calibration of the T fields
that are used in subsequent radionuclide transport calculations for PA. Areas of the domain
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where travel time has high sensitivity to T (Figure 25) identify locations where a single-well or
multi-well transmissivity test would reduce uncertainty in T that affects travel times. These
types of measurements can be seen as one-time efforts and these locations do not necessarily
identify optimal locations for long-term monitoring of heads and gradients.

The spatial sensitivity of groundwater travel time through the heterogeneous transmissivity fields
is calculated for a single groundwater travel time performance measure. Relative to the results
for the model calibration, the sensitivity of the groundwater travel time to T is elevated in only
very localized regions. The areas ofhigh sensitivity of the travel time to pressure are larger and
more diffuse. The correlation at anyone location in the model domain is not especially strong.
Absolute values of the Spearman correlation coefficient from 0.20 to 0.30 are typical, with
maximum values of 0.60 to 0.70 depending on the sensitivity calculation.
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Figure 26. Locations of the 100 flowpaths along which travel time to the boundary of the WIPP
site is calculated.

79



 

 Information Only 

4.6 Summary
Calculation of sensitivity coefficients across a spatial domain has only recently been applied and
these applications have focused on the sensitivity of model results to a small number of input
parameters. Here, a new sampling-based sensitivity analysis procedure that considers the
sensitivity of an integrated model output to each ofN input variables has been developed. These
sampling-based sensitivity coefficients are consistent with, but different from, the average
sensitivities calculated as numerical derivatives at 99 pilot points. Each set of sensitivities
calculated at the pilot points is done for a single realization of the transmissivity field. The
advantage of this approach to calculating sensitivity is that it is computationally efficient;
however, the disadvantage is that it only provides sensitivity of a chosen output to the input
variable for a given configuration of the transmissivity field. The sampling-based sensitivity
coefficients require an ensemble of calibrated transmissivity fields, which is computationally
burdensome, but they provide an integrated measure of sensitivity to all of the calibrated
transmissivity fields at once. This approach captures the non-uniqueness of the transmissivity
calibration by using all 100 calibrated fields and also provides a measure of output sensitivity to
the input variables at all locations within the domain.

Application of the sampling-based sensitivity approach to the Culebra shows distinct regions of
higher and lower sensitivity to travel time with respect to both calibrated heads and
transmissivity. For travel time sensitivity with respect to heads, the regions of high and low
sensitivity are broad and fall mainly within and directly to the south of the WIPP site. Results of
travel time sensitivity with respect to transmissivity show regions of high and low sensitivity that
are considerably more localized. The region with the greatest absolute value of sensitivity is
approximately I Ian square directly below the central portion ofthe southern WIPP-site
boundary. These regions ofhigh or low sensitivity can be identified and targeted for additional
head monitoring wells and measurements of transmissivity. Results of the spatial sensitivity
calculations are combined with results of other approaches to monitoring well optimization in the
following section

The spatial sensitivity calculations are the only one of the three techniques used to identify
locations for additional monitoring wells that directly link the monitoring network to a PA
calculation. This direct link identifies regions of the Culebra where the travel times to the WIPP
boundary are most sensitive to calibrated head and transmissivity values. However, it is
necessary to keep in mind that these PA calculations are predictions and the regions of increased
sensitivity determined here are only as good as these PA predictions. If the conceptual model of
transmissivity, including the definition of the high and low transmissivity regions, changes, the
results of these sensitivity calculations will change. Furthermore, the sensitivity calculations use
the groundwater flow models calibrated with the current set of boundary conditions and
responses to transient hydraulic tests. When new data are acquired that change these boundary
conditions or that provide different transient calibration targets, these may also change the
calculated regions of elevated sensitivity.

4.7 Calculation Details
The calculation of the Spearman rank correlation coefficients as spatial sensitivity coefficients
was done using the program vlsap on the Albuquerque linux cluster lylin102. The vlsap source
and executable are in the /h/wipp/sensitivity/steady-state/QAd/source directory. The actual
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calculations using vlsap are in the Ihlwipplsensitivitylsteady-state/QAd! directory. The vlsap
program is designed to be run from a single set of instructions entered on the command line.
Multiple runs ofvIsap to calculate different sensitivity coefficients are completed using the shell
GetSens.sh. A listing of this shell is provided in Appendix 10. Prior to running the GetSens.sh
shell, it is necessary to identify the 100 calibrated transmissivity and head fields to be used in the
calculations. These fields are accessed and stored in the correct locations for running vlsap by
using the shell GetToplOO.sh. A listing of this shell is included in Appendix 10. These 100
fields are a subset of the fields calibrated by McKenna and Hart (2003). The vlsap program is
tested on 100 realizations of a IxlOO cell test problem that is also run in Excel. The testing is
summarized in Appendix 10.
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5.0 Combining Monitoring Approaches

Three different approaches to identifying optimal locations for additional monitoring wells have
been demonstrated and, in some cases, developed in this work. In the case of the geostatistical
estimation variance reduction approach, areas of high estimation variance were identified as
being locations for additional wells. However, there are many locations with high estimation
variance and the results of this approach do not uniquely identify optimal locations for additional
wells. To some extent, combining all three ofthe approaches into a single map can reduce this
non-uniqueness. Here, the three approaches are combined to provide a combined score, Sc, that
identifies the best locations for new wells. The higher the value of the score, the better the
location for a new well.

The combined score is the weighted sum of the three different measures calculated in the three
monitoring approaches.

(18)

The three components of Sc are the ordinary kriging variance, d OK, calculated from the existing
network, the total number of acceptable three-point estimators when a new monitoring well is
added to the network at location x, N3p" and the absolute value of the rank correlation coefficient
between travel time to the WIPP boundary and either the estimated transmissivity or head, r s•

The absolute value of the rank correlation coefficient is used as both positive and negative values
are of equal importance for locating new monitoring wells. For every location, x, in the model
domain, all three component values of Sc are determined. The weights, Oli, can be adjusted to
account for more or less emphasis on any of the three components. For the results presented
here, each component of the combined score is equally weighted: WI = W2 = OJ] = 1.0, and the
weights are dropped from further development of the combined score equations.

The units of the different results to identifying monitoring locations are not consistent, being in
m2

, number of triangles, and unitless. Therefore, it is necessary to rescale the results into
dimensionless values. This rescaling is accomplished as:

S
_ a}'K (x) - MIN(CY~K(X) N,p,(x) - MIN(NJP' (x»)

c- 2 2 + +
MAX(cyOK (x)) - MIN(CYOK (x)) MAX(N,p, (x)) - MIN(N,p, (x)

Ir(x), 1- MIN(lr(x), I)
MAX(lrCx ), I) -MIN(lrCx ), I)

(19)

where the MAX and MIN operators define the maximum and minimum values of the different
components ofthe combined score across the entire calculation domain. This rescaling process
constrains the values of each component to lie within [0,1].

Maps of the rescaled components of the combined score are shown in Figures 27, 28, 29 and 30.
These maps can be compared with the maps of the raw, not rescaled, components in Figures 5,
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14,24 and 25, respectively. In each of the rescaled maps, the August 2003 monitoring network
is shown along with eight additional wells that have been completed in the last several years.
These well locations were detennined using a number of factors independent of the monitoring
network optimization approaches defined in this report and are shown here for comparison
purposes. The names and locations of the eight new wells are given in Table 12.

Table 12. Names and location ofnew monitoring network wells.

Well Name X coordinate (m) Y coordinate (m)
C-2737 613597 3581401

IMC-461 606180 3582240
SNL-I 613782 3594302
SNL-2 609113 3586529
SNL-3 616103 3589047
SNL-5 611984 3587281
SNL-9 608705 3582238
SNL-12 613210 3572728

5.1 Results
The final maps of the combined score values are shown in Figures 30 and 31. The theoretical
minimum and maximum combined score values for any location are 0.0 and 3.0 respectively.
The calculated minimum and maximum combined score values when the sensitivities of travel
time to head are one of the components (Figure 31) are 0.1 to 2.4, respectively; when the
sensitivity of travel time to transmissivity is included as a component (Figure 33), the maximum
and minimum values are 0.08 and 2.2.

The combined score map that includes sensitivity oftravel time with respect to head (Figure 31)
shows the highest combined scores to the west, south and east of the WIPP site. The lowest
scores occur within the WIPP site boundaries. The character of the three component maps is
evident in the final combined score map, which is controlled mainly by the rescaled estimation
variance map (Figure 27) and the rescaled sensitivity of the travel time to the estimated heads
map (Figure 29). The area of high combined scores to the east ofthe site is to the east of the low
transmissivity boundary. The high values of the combined score in this area are caused by high
values of all three components (Figures 27, 28, 29 and 30), but it is noted that only one of these
three components is directly based on solution of the groundwater flow model (Figure 30). The
high component scores in this region east of the site for the estimation variance and the three­
point estimators are due mainly to the paucity of monitoring wells in this area.

The combined score map that includes the sensitivity of the travel time to the calibrated
transmissivities (Figure 30) shows that the lowest combined scores occur in the center of the
WIPP site and this area is not optimal for the location ofadditional monitoring wells. The
locations with the highest combined scores are generally controlled by the estimation variance
and number of acceptable three-point estimator maps. These high score locations are generally
located at the northern and southern portions of the domain in areas distant from existing wells.
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The two combined score maps, Figures 31 and 32, show similar results for the locations of the
calculated regions of high and low scores. This result is not surprising given that two of the
components in each map are identical: the estimation variance and number of three-point
estimators (Figures 27 and 28). Therefore the differences in the combined score maps are due to
differences in the travel time sensitivity maps (Figures 29 and 30). One strong difference in
these maps is that the highest sensitivity oftravel time with respect to transmissivity occurs just
south of the southern WIPP site boundary (Figure 30), but this location has extremely low travel
time sensitivity with respect to heads (Figure 29). Therefore, the combined score for this region
is low or moderately high depending on whether the sensitivity is calculated with respect to head
(Figure 29) or transmissivity (Figure 30). These results point up the fundamental difference in
identifying locations needed for better understanding of T in order to calibrate PA models versus
locations identified for long-tenn monitoring ofheads and gradients. If the main goal ofnew
monitoring wells is to identify transmissivity and to reduce uncertainty in the travel time
calculations, then it may be prudent to locate a well in this location. Ifmonitoring changes in the
heads and the gradient over time is the main goal, then this location may not require a new well.
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Figure 27. Rescaled [0,1] estimation variance map. The wells in the historic monitoring
network are shown as plus signs; the new well locations are shown by diamonds.

85



 

 Information Only 

359500

1.0

3590000 0.9

0.8

0.7- :&585000
E 0.6-0)
c
1: 0.51::
0z

3580000 0.4

0.3

0.2
357 000

0.1

0.0

3570000

605000 610000 615000

Easting (m)

620000

Figure 28. Rescaled [0,1] number of acceptable three-point estimators map. The wells in the
historic monitoring network are shown as plus signs; the new well locations are shown by
diamonds.
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Figure 29. Rescaled [0,1] absolute value of the sensitivity of the travel time to the WIPP
boundary with respect to the estimated head at every point. The wells in the historic monitoring
network are shown as plus signs; the new well locations are shown by diamonds.
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Figure 30. Rescaled [0,1] absolute value of the sensitivity of the travel time to the WIPP
boundary with respect to the transmissivity at every point. The wells in the historic monitoring
network are shown as plus signs; the new well locations are shown by diamonds.
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Figure 31. Combined score values map including estimation variance. number ofthree·point
estimators and sensitivity of travel time to head. The wells in the historic monitoring network
are shown as plus signs; the new well locations are shown by diamonds.

89



 

 Information Only 

3595000

2.2

3590000 2.0

1.8

1.6

- 3585000 1.4E-C)

1.2~
t=
0 1.0z

3580000
0.8

0.6

0.43575000

0.2

0.0

3570000

I

605000 610000 615000 620000

Easting (m)

Figure 32. Combined score values map including estimation variance, number ofthree-point
estimators and sensitivity of travel time to transmissivity. The wells in the historic monitoring
network are shown as plus signs; the new well locations are shown by diamonds.
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5.2 Summary
Three different approaches to monitoring network optimization were used to identify locations
where additional wells could improve the network. These three approaches identify: I) locations
where additional wells will reduce the uncertainty in predicting head values at locations without
wells; 2) locations where an additional well will allow for maximum improvement in the ability
ofthe existing monitoring well network to identify changes in the magnitude and orientation of
the hydraulic gradient by maximizing the additional number of acceptable local gradient
estimators that can be created; and 3) locations where the performance assessment measure of
advective travel time to the WIPP boundary is most sensitive to the value of head or
transmissivity.

These three approaches to monitoring network design all attempt to optimize the network with
respect to different objectives. Combining all three ofthese approaches is done by rescaling
each of the raw maps of estimation variance, additional local gradient estimators and sensitivity
to have a range (minimum to maximum) of 1.0 and to be unitless. The final combined score
maps show, on a scale of 0.0 to 3.0, the best places to locate additional wells to meet all three
objectives when each of the three objectives is given equal weight. The higher the combined
score, the better the location for a new well. The final combined maps are similar with some
minor, but important differences depending on whether or not sensitivity with respect to head or
transmissivity is included in the combined score.

Eight new wells have recently been constructed (Table 12). Although constructed for a variety
of reasons, the combined score values in the locations of these new wells are, fortuitously, all
relatively high with the exception ofC-2737 within the WIPP site and IMC-46 I and SNL-9. C­
2737 was sited to provide a monitoring location directly above the center of the WIPP disposal
panels. IMC-461 was a "borehole of opportunity" with no DOE control over its location. SNL-9
was situated precisely where it was to verify the geologic model underlying the transmissivity
fields used for this study.

5.3 Calculation Details
All calculations for the combined score maps are made in the Monitoring_04\combine\
subdirectory on the CD-ROM included as part of this analysis package. A single code, combine,
was written to do the combined score calculations. This code was written and compiled under
Microsoft Visual Studio, Version 6.0 on a Pentium 4, 1.7-GHz processor PC running the MS
Windows 2000 operating system. The compiled version of the combine code used here is
located in the Monitoring_04 IcombineIdebug subdirectory.

The combine program is run from the DOS command prompt and prompts the user to enter the
names of three input files and writes a single output file. For the calculations done here, the
input files are:

I) kt3d.out: the output file created by running the kt3d code in the Monitoring_04\Geostat
subdirectory. This file has a four-line header and two columns of output. Only the
estimation variance, in the second colunm, is used by the combine code.

2) numbers.out: the output file created by running the locat program in the
Monitoring_04\locat_triangle! subdirectory. This file has three columns: X, Y and total
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number of acceptable three-point estimators when a new monitoring well is added at this
X,Y location, and no header lines.

3) sens. WTime_toJmap or sens. WTime_to_h.map: the output file created by the vlsap
program run on the linux cluster. This file is a 307x224 matrix of numbers that are the
Spearman rank correlation coefficients between travel time and either head or
transmissivity depending on which input file is entered.

The combine code reads in the three files taking into account the different file formats and
ordering and applies (Equation 19) to the input data. The output file is a 9-column tile that has
the X and Y coordinates, the raw values of the different maps, the rescaled values ofthe different
maps and the final sum ofthe rescaled values. The combine source code, combine.c, and the
executable, combine.exe, are located in the \Monitoring_04\combine\ subdirectory on the CD­
ROM.

Results of the combine code can be verified by visual inspection ofthe output file and
comparison ofthe rescaled maps (Figures 27, 28, 29 and 30) to the raw value maps (Figures 5,
14,24 and 25). Additionally, for any row in the output file, the value in the 9th column must be
the sum ofthe values in the 6t

\ 7th and 8th columns. The combine code was run twice, once with
the third input file being sens. WTime_toJmap and once with the third input file being
sens. WTime_to_h.map. The two output files are combine_T.xyz and combine_h.xyz and are
contained in the \MonitorinK.-04\combine\ subdirectory on the CD-ROM included with this
analysis package.
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6.0 Additional Monitoring Wells

Eight new wells have been added to the historical monitoring network to bring the total number
ofmonitoring wells to 38. The effect of adding these new wells to the monitoring network is
examined by recalculating the estimation variance map and the three-point estimator map. The
main goal of this study is to identify optimal locations for the addition of future wells. The well
removal calculations done previously on the original 30 well data set are not repeated here. The
new wells have been drilled and developed, but they are not yet providing stable estimates ofthe
heads in the Culebra. Therefore, the sensitivity of travel time to T and head values in these new
wells cannot yet be calculated. The new estimation variance and three-point estimator maps are
combined with the existing sensitivity maps to produce a set of updated maps for optimal
placement of additional monitoring wells.

6.1 Expanded Data Set
The well locations and head data for the 30 wells in the historical data set are shown in Table 3.
Eight new wells are added to this network and the locations of these wells and the heads at the
wells estimated as the average of the heads across the 100 calibrated T fields (McKenna and
Hart, 2003; Beauheim, 2003) are shown in Table 13.

Table 13. New monitoring wells and estimated heads

Estimated
Integer Well X Coordinate Y Coordinate Freshwater

ID Name (m) (m) Head (m)
31 C-2737 613597 3581401 921.93
32 IMC-461 606180 3582240 925.98
33 SNL-l 613782 3594302 943.58
34 SNL-2 609113 3586529 933.25
35 SNL-3 616103 3589047 938.59
36 SNL-5 611970 3587285 936.27
37 SNL-9 608705 3582238 927.41
38 SNL-12 613210 3572728 910.18

6.2 Variogram Calculation
The addition ofeight wells to the monitoring network necessitates recalculation of the variogram
defining the spatial correlation of the head data. The original variogram was calculated on the
residuals between the measured head data and a best-fit plane through the data to remove the
trend. With the addition ofeight new wells, there appear to be enough head measurements to
accurately estimate heads at unmeasured locations using ordinary kriging without first removing
the trend from the data. Therefore the variogram for the updated monitoring network of 38 wells
is calculated on the actual measured and estimated heads. This variogram is shown in Figure 33
and can be compared to the residual variogram in Figure 4.
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Figure 33. Experimental omnidirectional variogram (points) and analytical model variogram
(line) fit to it. This variogram is for the actual measured and estimated heads.

This experimental variogram was fit with a nested model where a Gaussian model is used to fit
the points at relatively low separation distances and a spherical model is used for points at the
larger separation distances. The Gaussian model fit to the experimental variogram in Figure 33
has a nugget value of 10 m2

, a sill of50 m2 and a range of3300 m. The spherical model has a
sill of30 m2 and a range of 15,000 m. The sum of the nugget and two sills was constrained to
reach a maximum at the covariance of the residual data set, 90 m2

, as shown by the horizontal
dashed line in Figure 33. The numbers of data pairs that were used for the calculation of each
point in the experimental variogram are also shown in Figure 33. As was done in the original
data set, the calculation ofthe experimental variogram was done by considering combinations of
pairs of data points in all directions, an "omnidirectional calculation". Due to the limited number
of head data, 38, it was not possible to calculate directionally dependent variograms that might
show anisotropy in the spatial correlation of the residuals. The experimental variogram points
beyond a separation distance of9000 m and above the level of the covariance represent negative
spatial correlation

A major difference between the variograms calculated with 30 and 38 data points is in how
quickly they reach the final sill value. The variogram from the original 30 data (Figure 4)
reaches 50 percent of the final sill value, or 29.1 m2

, at a separation distance of3800 meters.
The variogram calculated on the 38 data (Figure 33) reaches a value of50 percent of the final
sill, a value of45 m2

, at a separation distance of approximately 1900 meters, or half the distance
ofthe original variogram. This more rapid rise in the variogram model will result in more
localized decreases in kriging variance around individual wells than were calculated for the
original data set.
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6.3 Estimation Variance Calculations

The same procedure and software used in the calculation of the estimation variance from the 30­
well data set is also used here for the expanded data set. The resulting map of estimation
variance for the expanded (38-well) monitoring network is shown in Figure 34. From Figure 34,
the effect of the monitoring network configuration on the resulting estimates ofvariance is
obvious. The lowest estimation variance values, the nugget value of 10.0, occur at the well
locations and the highest values occur at locations that are beyond the distance ofthe largest
variogram range, 15,000 meters, from the closest observation well. The minimum possible value
of the kriging variance is the value of the nugget in the variogram model. Therefore, complete
coverage of the site by the monitoring network would result in an estimation variance of 10.0 at
all locations. Under ideal conditions, the maximum possible value ofthe kriging variance is
equal to the total sill of the variogram, 90.0 m2 in this case; however, in cases where data points
are clustered, such as within the WIPP site, screening of some data by others can result in
negative kriging weights that cause the kriging variance to increase above the level of the sill.
The maximum kriging variance in these calculations is approximately 120 m2
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Figure 34. Kriging variance (m2
) for estimation of the heads using the 38-well monitoring

network.
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From the map in Figure 34, it is obvious that there are many locations outside of the WIPP site
where the addition of a well would have maximum impact on reducing the estimation variance.
These locations are wherever a well could be located where its influence does not overlap on the
region of decreased variance from an already existing monitoring well. Within the WIPP site,
the estimation variance is already relatively low at all locations. In fact, given the small
distances between some wells relative to the range ofthe variogram, it may be possible to
remove some of the existing wells with only minimal increase in the estimation variance within
the WIPP site boundary. The well removal calculations are not redone here, but given that only
one of the eight new wells was located within the WIPP site, the kriging variance changes within
the WIPP site as calculated in section 2.4 should remain relatively unchanged.

Figure 34 shows similar results to the calculation of estimation variance with the 3D-well
network in that many locations can be identified where a new monitoring well will have
maximum impact on the reduction of the overall estimation variance. These areas are generally
in the comers of the flow model domain and to the east of the WIPP site. Comparing Figures 5
and 34 shows the effect of adding the eight new wells to the monitoring network on the
estimation variance.

6.4 Addition of New Monitoring Wells Using Three-Point Estimators
The local gradient estimator built on three wells is used to determine optimal locations for new
wells to be added to the network. This analysis is the same as that done above with the exception
that the existing network is now the expanded 38 well network. The number of acceptable three­
point estimators produced by locating a new well at any location in the domain is calculated
subject to the constraints on the shape ofthe estimator and the RHME as defined previously.
The same set of 100 calibrated heads used previously is also used in this analysis.

The addition of a new well to the existing monitoring network can only increase the number of
acceptable estimators. Without the shape or RHME criteria, the maximum possible number of
estimators from 38 wells is 8436 (Equation 12). Addition of another well, 39 total wells,
increases the maximum possible number of estimators to 9139, an increase of 703. If the
additional well can be placed such that all additional estimators created from that well meet both
criteria, then the increase in the number of acceptable estimators will be 703. This number
serves as an upper bound on the possible number ofnew estimators.

On average, addition of a new well to the Culebra network creates a total of 4844 acceptable
three-point estimators, or an increase of2744 (131 percent) over the average of2100 estimators
created from adding an additional well to the 3D-well network.

The results of the well-addition calculations are shown as a map in Figure 35. Locations where
the addition ofa well will increase the number of acceptable estimators the most are generally in
the areas surrounding the outside of the WIPP site. A well added in these areas can take
advantage of the large number of existing wells within the WIPP site to create estimators that
meet both the shape and RHME criteria. Exceptions to these areas are locations between the
WIPP site and locations where wells already exist. The areas ofhighest return do not extend all
the way to the edges of the domain because either the no-flow region restricts the number of
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triangles that can be created or, in the NE comer ofthe domain, the addition of a single new well
is not enough to create a large number of triangles in the relatively isolated region ofthe site.
A relative comparison of the effect ofadding the 8 new wells to the monitoring network can be
made by comparing the results in Figure 35 with those in Figure 14. The patterns in the two
maps can be compared, but the absolute values cannot. There are some subtle changes in the
shape of the map between the two monitoring networks, but the general areas outside of and
surrounding the WIPP site with the largest return for a new well are similar. An additional well
within the WIPP site will produce the smallest increase in the number ofacceptable estimators as
this area already has a large number ofwells and the majority ofthe estimators created by an
additional well within this area will not be large enough to achieve the necessary head drop to
meet the RMHE criterion.
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Figure 35. Number ofacceptable local gradient estimators for a single new well placed at any
location within the domain. Addition ofa single well to the original 30-well network produces,
on average, 2100 estimators.

6.5 Combining Monitoring Approaches
The same approach of normalizing the values of each map to a {O,1} scale and then adding the
maps together to get a final combined score map is used with the results from the expanded
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monitoring network. The maps showing the sensitivity of the travel time to both head and T
have not changed and the scaled sensitivity maps in Figures 29 and 30 are used in this analysis.
The scaled versions of the maps showing the estimation variance and the number ofacceptable
three-point estimators are shown in Figures 36 and 37t respectively. These figures can be
compared to Figures 27 and 28 to see the effect of the additional eight wells in the monitoring
network. It is especially interesting to compare the results in Figure 37 with those in Figure 28
for the northeast comer of the domain. The green region of smaller numbers of additional
triangles due to an additional well in that area nearly disappears after the addition of the eight
new wells. Addition ofthese new wells, especially SNL-l and SNL-3, make this northeast
comer of the domain a much more productive location for additional monitoring wells. The lack
ofwells near this comer in the 3D-well network has been overcome, to some extent, by the
addition of the 8 new wells, and an additional well in this northeast area would provide a
significant number of acceptable three-point estimators.
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Figure 36. Rescaled [0,1] estimation variance map. The wells in the expanded monitoring
network and the WIPP site boundary are shown.
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Figure 37. Rescaled [0,1] number ofacceptable three-point estimators map. The wells in the
expanded monitoring network and the WIPP site boundary are shown.

The final maps of the combined score values are shown in Figures 38 and 39. The theoretical
minimum and maximum combined score values for any location are 0.0 and 3.0 respectively.
The calculated minimum and maximum combined score values when the sensitivities of travel
time to head are one of the components (Figure 38) are 0.1 to 2.4, respectively; when the
sensitivity of travel time to transmissivity is included as a component (Figure 39), the maximum
and minimum values are 0.10 and 2.2.

The combined score map that includes sensitivity of travel time with respect to head (Figure 38)
shows the highest combined. scores to the west, south and east of the WIPP site. The lowest
scores occur within the WIPP site boundaries. These results are consistent with the results
obtained. using the historical monitoring network. The character of the three component maps is
evident in the final combined. score map, which is controlled. mainly by the rescaled estimation
variance map (Figure 36) and the rescaled sensitivity of the travel time to the estimated. heads
map (Figure 29). The area ofhigh combined scores to the east of the site is to the east of the low
transmissivity boundary. The high values of the combined score in this area are caused by high
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values of all three components (Figures 36, 37, and 29), but it is noted that only one of these
three components is directly based on solution of the groundwater flow model (Figure 29). The
high component scores in this region east of the site for the estimation variance and the three­
point estimators are due mainly to the paucity ofmonitoring wells in this area.

Relative to the results obtained using the historical monitoring network, the addition ofthe eight
new wells to the monitoring network is readily apparent. The areas of lower combined score
around each well in Figure 38 are smaller than those obtained using the historical network
(Figure 31) and this is due mainly to the change in the variogram shape between the historical
and expanded networks. The area directly south of the WIPP site has a very high combined
score and the reduction of the estimation variance at the location ofSNL-12 is relatively
localized due to the large values of the number of acceptable estimators and high sensitivity of
travel time to head at this location. The variogram calculated with the 38-well network makes
the areas ofcombined score shown in green in Figure 38 thinner and less connected compared to
the original 30-well network seen in Figure 31.
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Figure 38. Combined score values map including estimation variance, number ofthree-point
estimators and sensitivity of travel time to head. The wells in the expanded monitoring network
are shown as plus signs.
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The combined score map that includes the sensitivity ofthe travel time to the calibrated
transmissivities (Figure 39) shows that the lowest combined scores occur in the center of the
WIPP site and this area is not optimal for the location ofadditional monitoring wells. The
locations with the highest combined scores are much more localized than are the results obtained
when the sensitivity of the travel time to the estimated head is used. The rescaled sensitivity of
travel time to T map (Figure 30) shows the highest sensitivities occurring directly south of the
center ofthe WIPP site, directly south of the east side ofthe WIPP site and along the bottom of
the model domain. Compared to the results for the original 3D-well network, the 38-well
network combined score results show that the effect of any single well is more localized and this
is due to the different variogram shapes between the two data sets. The high score location just
south of the center of the WIPP site is seen in both combined score maps (Figures 32 and 39).

Further characterization of the high sensitivity locations to the south ofthe WIPP site will
directly address PA-driven monitoring goals. The area ofhigh sensitivity along the southern
boundary of the domain is most likely connected to the relationship between the assigned head
boundary condition there and the calibrated T values in that area. This high sensitivity region
indicates that calibrated T's in this area do have some level of control on travel times to the
WIPP site boundary, most likely by controlling the direction that the particles take from the
release point to the WIPP site boundary.

The two combined score maps, Figures 38 and 39, show somewhat similar results for the
locations of the calculated regions ofhigh and low scores. This result is not surprising given that
two ofthe components in each map are identical: the estimation variance and number of three­
point estimators (Figures 36 and 37). Therefore the differences in the combined score maps are
due to differences in the travel time sensitivity maps (Figures 29 and 30).
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Figure 39. Combined score values map including estimation variance, number of three-point
estimators and sensitivity of travel time to transmissivity. The wells in the expanded monitoring
network are shown as plus signs.

6.6 Calculation Details
All calculations for the combined score maps are made in the Monitoring_04IAdd_8\
subdirectory on the CD-ROM included as part of this analysis package. No new codes were
written for these analyses. Existing codes used in the calculations on the historical data set were
used for the same calculations on the expanded data set.
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7.0 Conclusions

A set of 30 head monitoring wells in the Culebra within and surrounding the WIPP site provided
head data at two time periods: August 2000 and August 2003. This head monitoring network
provided the input data for three different approaches to optimizing the monitoring well network.
Optimization is interpreted broadly here to include both the identification of new locations where
wells could be added to the network to meet some objective and also identification of existing
wells that could be removed from the monitoring network as they provide redundant information.
The three different approaches to monitoring network optimization examined here are: I)
geostatistical variance reduction; 2) local gradient estimation using combinations of three wells;
and 3) sampling-based spatial sensitivity coefficients.

7.1 Summary of Calculations

Geostatistical variance reduction is a fairly common optimization approach that exploits several
properties of the kriging variance to identify new locations where a well could be added to an
existing monitoring network to provide the greatest reduction in estimation variance. The same
calculational approach can be used to determine existing wells that, upon removal from the
monitoring network, provide the smallest increase in the overall estimation variance. Kriging
provides an ideal approach to these calculations as the estimation variance calculated through
kriging is only a function ofthe data configuration and not the data values. Therefore, the
estimation variance reduction/increase for the addition/removal of a new well can be calculated
prior to adding/removing that well from the network. This calculation assumes that the
variogram calculated for the head, or residual, values in the network does not change with the
addition/removal of a well.

Application ofthe geostatistical estimation variance calculations to the Culebra network shows
that there are many locations where a well can be added to the network that will produce a
maximum reduction in the average estimation variance. These locations are all outside of the
WIPP site boundaries and the majority of these locations are to the north and to the east sides of
the calculation domain. Adding new wells within the WIPP site boundary will not have a
significant impact on the estimation variance. The geostatistical estimation variance calculations
were also applied to the problem of determining which existing wells to remove from the
network. Results for this problem can easily be calculated; however, for removal of more than
one well at a time, it is necessary to know what combinations ofwells need to be removed to
make the problem tractable. Three different base cases were run here and the results show that
simultaneous removal of the WIPP-12 and WIPP-22 wells makes an insignificant change in the
estimation variance relative to the fu1l30-well network, while removal of the H-12 and P-17
wells has a significant impact. Beyond these results, some combination ofthe ERDA-9, H-3,
WIPP-19 and WIPP-21 wells should be examined forremoval. The largest increases in variance
occur when AEC-7, H-5, WIPP-30, H-9 and H-IO are removed from the network. These wells,
or replacements, are most important to keep in the monitoring network. The well removal
calculations for three different base cases are summarized in Table 14.
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Local gradient estimators have been employed previously to identify flow directions and
magnitudes in aquifers from combinations of3 wells. However, previous work has not identified
the conditions under which these local gradient estimators give accurate results. Work in this
report identified triangles with base to height ratios between 0.5 and 5.0 as giving the best
results. Additionally, the size ofthe estimator necessary to limit the relative head measurement
error in the Culebra monitoring program to less than two percent of the expected head drop
across any estimator was determined. Using these two constraints to identify acceptable local
gradient estimators reduces the number of combinations of three wells from 4060 to 1879. Two
uses of local gradient estimators for long-term monitoring of gradients were developed. The first
technique identifies changes in the orientation and magnitude ofthe local gradients over time.
An example calculation was completed using the August 2000 and August 2003 water level data
and the majority of changes in flow direction and orientation were found to be minimal. The
three-point estimators exhibiting larger changes can now be examined in detail to identify a root
cause of these changes. The second monitoring technique using local gradient estimators was
designed to identify the best places to locate additional monitoring wells and the existing wells
that could be removed from the network with the smallest impact on the ability of the network to
detect changes in the gradient.

Results of the calculations to identify locations for additional monitoring wells show that new
wells should be located outside of the WIPP site. With the exception of the northeast comer of
the model domain and an area directly west of the WIPP site, locating a new well at almost any
location outside of the WIPP site could provide nearly the same increase in the number of
acceptable local gradient estimators. The recent addition of eight new wells to the monitoring
network makes the northeast comer ofthe domain, a region where the geologic and hydrologic
conceptual model is currently poorly constrained, a productive location for the siting of a new
monitoring well. The hydraulic gradient in the region directly west of the WIPP site is already
adequately constrained. The well removal calculations were done by removing one well at a
time from each of three base case scenarios. Similar to the geostatistical estimation variance
calculations, the removal ofwells WIPP-12 and WIPP-22 from the original network oDO wells
has little impact on the monitoring network performance. Further removal ofwells H-12 and P­
17 does have a significant impact on the monitoring network. The next best wells to remove in
terms of impacting the monitoring network in a minimal way are some combination of ERDA-9,
WIPP-21, H-3, and WIPP-19. The wells that are most important for the continued operation of
the monitoring network include WIPP-25, WIPP-30, H-7 and H-5. H-12 is also shown to be an
important well to replace. The well removal results for the three different starting cases are
summarized in the right-most three columns of Table 14.
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Table 14. Relative importance ofexisting wells in the monitoring network. X = least important,
0= most important. Blank boxes indicate moderate importance. Wells removed for the starting
case are denoted "NA".

Well Geostatistical Variance Reduction Three-Point Estimators
4 2 Removed

All Wells 2 Removed Removed All Wells 4 Removed
AEC-7 0 0 0
DOE-1

ERDA-9 X X X X X X
H-2
H-3 X X X X X
H-4 0
H-5 0 0 0 0 0 0
H-6
H-7 0 0 0
H-9 0 0
H-IO 0 0 0
H-ll
H-12 NA 0 0 NA
H-17 0
P-17 NA NA

WlPP-12 X NA NA X NA NA
WlPP-13
WlPP-19 X X X X X X
WlPP-21 X X X X X X
WlPP-22 X NA NA X NA NA
WlPP-25 0 0 0
WlPP-26
WlPP-30 0 0 0 0 0

The third approach to monitoring network optimization explored in this report is that of using
spatial sensitivity coefficients to identify locations for new wells where some model output of
interest (e.g., travel time) is most sensitive to the transmissivity or head at that location. This
approach only provides locations for new wells - it does not examine removal ofwells from the
existing network. These sensitivity coefficients are calculated through a sampling-based
technique across 100 calibrated transmissivity fields and are shown to be appropriate when
compared to sensitivity coefficients calculated using a derivative-based approach for the overall
calibration of the flow model to the observed heads. The sampling-based sensitivity coefficients
are shown as a map of the sensitivity of the travel time from the repository to the WlPP site
boundary with respect to head and transmissivity. The results with respect to head show a
smoothly varying sensitivity field with large regions ofpositive and negative correlation between
head and travel time. The results with respect to transmissivity have much more localized
regions ofpositive and negative correlation with travel time being most sensitive to

105



 

 Information Only 

transmissivity at a location directly south ofthe WIPP site boundary. It is noted that increased
knowledge of the spatial variation of the Culebra transmissivity is not a goal of the long-term
monitoring network, but transmissivity is an input to the T field calibration process used as input
to further PA calculations.

As a final step, the results ofthe geostatistical estimation variance calculations, the local gradient
estimation and the spatial sensitivity coefficients were combined into two "combined score"
maps. These maps show, on a scale from 0.0 to 3.0, the best locations to locate new monitoring
wells. In general, these areas are outside of the WIPP site. Eight new well locations are
compared to these final combined score maps and the majority of these new locations are already
in high combined score regions.

7.2 Reexamination of Monitoring Goals
The different purposes, goals and factors that must be taken into account in the design of the
Culebra long-term monitoring network were stated in Section 1.2. These goals come from a
variety of sources, mainly the state and federal regulatory bodies with WIPP oversight and the
ability of the network to provide needed inputs to PA models. Practical factors impacting
network design require that the total number of wells in the monitoring network be minimized
and that certain wells be retained in the network. The monitoring network should also serve as a
vehicle to provide new information to the hydrologic and geologic conceptual models.

The first monitoring network goal is to allow for determination ofthe direction and rate of
groundwaterflow across the WIPP site. Network optimization techniques using three-point
estimators were developed specifically to meet this goal (Section 3.0). Independently obtained
head measurements cannot by themselves determine the direction and magnitude ofthe hydraulic
gradient. For a confined aquifer with a mainly two-dimensional flow pattern, head
measurements at three separate locations are necessary to determine the orientation and
magnitude of the gradient. The techniques developed and demonstrated in this work provide for:
I) determining what three-point estimators will give the best estimates of the gradient under the
inherent water-level measurement error; 2) monitoring temporal changes in the gradient; 3)
identifying where new wells would provide the most benefit; and, 4) identification of wells that
are providing redundant information. Model studies done to assess the impact of aquifer
heterogeneity indicate that good estimates of the flow direction and magnitude of the gradient on
the WIPP site can be identified with three-point estimators contained fully, or partially, within
the WIPP boundary that have areas between one-eighth of the size of the WIPP site and two and
a halftimes the size of the WIPP site.

The second monitoring goal is to provide data needed to infer causes ofchanges in water levels.
Detecting water level change can be done in a single well and an implicit requirement to meet
this goal is that there are enough wells in key locations both within and around the WIPP site to
detect any water level changes. Checking for the adequate distribution of wells in and around
the WIPP site is accomplished using a geostatistical variance reduction approach (Section 2.0).
These calculations identify where additional wells are needed and which existing wells can be
removed from the network. After a change in water level is detected, the cause of that change
must be inferred. There must be enough wells in the proper configuration to infer the cause of a
change. The geostatistical variance reduction and three-point estimator approaches to
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monitoring network design provide networks that maintain enough well density with the proper
configurations to infer causes ofchanges. An example of detecting changes in the magnitude
and orientation of the gradient from August 2000 to August 2003 at more than 1800 locations
within the analysis domain is demonstrated in Section 3.0.

The third goal is that the monitoring network must provide spatially distributed head data
adequate to allow both defensible boundary conditions to be inferredfor Culebra flow models
and defensible calibration ofthose models. This goal is related to the previous one in that a
network that provides enough wells with the spatial distribution and configuration to detect and
infer causes of changes in water levels should also provide the data necessary to infer boundary
conditions and calibrate Culebra flow models. Therefore both the geostatistical variance
reduction and the three-point estimator approaches and the data gaps and redundancies that they
identify apply to this goal as well. Additionally, a third approach to monitoring network design
based on sensitivity analysis was developed to explicitly incorporate the results of calibrated
groundwater flow models directly into the monitoring network design. The set of calibrated
groundwater models used as the basis of this third approach incorporates the latest geologic and
hydrologic conceptual models. This approach to monitoring network design defines areas along
the boundaries and within the groundwater flow model where the model results are most
sensitive to the calibrated values ofhead and transmissivity. Regions ofhigh sensitivity are
targeted for future well locations.

In addition to meeting these three goals, a number of other factors were considered in the design
of the monitoring network. These included preserving the locations ofexisting fiberglass and
steel-cased wells, identifying wells that provide redundant information, incorporating current
hydrologic and geologic conceptual models and identifying locations where questions in the
conceptual models can be addressed and/or locations where the groundwater flow models used in
PA calculations are sensitive to the local values ofhead and transmissivity. Both the
geostatistically-based variance reduction approach and the three-point estimator approach to
monitoring network design explicitly considered minimization of the number ofwells in the
monitoring network through removal of existing wells. Tradeoffs between the minimization of
the wells in the network and the ability of the network to provide information on changes in
heads were examined. The monitoring network design done here was focused on optimization
approaches that are readily quantified into different objective functions. Meeting certain, less
easily quantified, factors such as locations where conceptual model questions can be addressed is
more difficult and the monitoring networks designed here did not explicitly address this factor.

The results of the calculations done to meet the monitoring goals and the other factors are
combined into a series of maps that show the best locations for adding wells to the monitoring
network. A table has also been created showing which existing wells are the most and least
important to maintain within the monitoring network. Overall these maps and this table show
that the WIPP Culebra program must move from a well network that is the result of a site
characterization driven drilling program where the majority ofthe wells were located within the
site boundary to a more process and conceptual model driven well network that can identify and
quantify changes in the Culebra water levels.
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Appendix 1. Results of Fitting Planar Equation to 2003
Heads Using SigmaPlot Version 8.0

Nonlinear Regression

[Variables]
x = col(2)
y= col(3)
z = col(4)
reciprocal_z = lIabs(z)
reciprocal_zsquare = lIzJ\2
'Automatic Initial Parameter Estimates
F(q,r)=ape(q,r,1,0,1)
[Parameters]
yO = F(x,z)[l] "Auto {{previous: -5007.74}}
a = F(x,z)[2] "Auto {{previous: 0.0001 98097} }
b = F(y,z)[2] "Auto {{previous: 0.00162289}}
[Equation]
f=yO+a*x+b*y
fit fto z
"fit fto z with weight reciprocal_z
"fit fto z with weight reciprocal_zsquare
[Constraints]
[Options]
tolerance=0.000100
stepsize=100
iterations=100

R = 0.77477928 Rsqr = 0.60028293 Adj Rsqr = 0.57067426

Standard Error ofEstimate = 6.0868

Coefficient
yO -5007.7353 949.8531
a 0.0002 0.0003
b 0.0016 0.0003

Std. Error t
-5.2721 <0.0001
0.6225 0.5389
6.3670 <0.0001

p

Analysis of Variance:
DF SS

RegressionZ 1502.2790
Residual27 1000.3392
Total 29 2502.6181

PRESS = 1311.9035

MS
751.1395

37.0496
86.2972

F
20.2739

P
<0.0001

Durbin-Watson Statistic = 1.2512
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Nonnality Test: K-S Statistic = 0.1222 Significance Level = 0.7332

Constant Variance Test: Passed (P = 0.7888)

Power ofperfonned test with alpha = 0.0500: 0.9997

Regression Diagnostics:
Row Predicted Residual Std. Res. Stud. Res. Stud. Del. Res.
1 940.4779 -7.1179 -1.1694 -1.4273 -1.4566
2 924.6207 -8.1307 -1.3358 -1.3632 -1.3863
3 926.9594 -4.7094 -0.7737 -0.7875 -0.7818
4 926.2529 0.8771 0.1441 0.1468 0.1441
5 925.2531 -7.3231 -1.2031 -1.2237 -1.2356
6 921.0591 -5.3991 -0.8870 -0.9106 -0.9076
7 932.2024 4.9176 0.8079 0.8468 0.8422
8 931.2947 3.2153 0.5282 0.5516 0.5443
9 913.9456 -0.3556 -0.0584 -0.0655 -0.0643
10 904.7887 6.4913 1.0664 1.2921 1.3091
11 913.4044 8.6556 1.4220 1.7864 1.8668
12 922.6894 -7.2394 -1.1894 -1.2173 -1.2288
13 917.0599 -0.0399 -0.0066 -0.0070 -0.0068
14 920.1462 -2.1562 -0.3542 -0.3660 -0.3601
15 925.1058 -6.8058 -1.1181 -1.1383 -1.1448
16 919.7149 -5.9249 -0.9734 -1.0017 -1.0017
17 929.5036 6.3164 1.0377 1.0614 1.0640
18 930.4658 4.7142 0.7745 0.7959 0.7904
19 928.3052 10.2848 1.6897 1.7233 1.7926
20 927.5545 -0.4345 -0.0714 -0.0727 -0.0714
21 928.0958 5.4942 0.9026 0.9202 0.9175
22 928.8705 3.2695 0.5371 0.5959 0.5887
23 923.7496 -2.4996 -0.4107 -0.4875 -0.4805
24 939.5304 -1.3004 -0.2136 -0.2338 -0.2296
25 929.1186 7.1714 1.1782 1.2062 1.2169
26 930.2453 8.8047 1.4465 1.4829 1.5183
27 929.6872 6.2828 1.0322 1.0576 1.0601
28 925.2293 -6.7793 -1.1138 -1.1345 -1.1408
29 924.3491 -6.4691 -1.0628 -1.0814 -1.0850
30 924.7601 -3.8101 -0.6260 -0.6379 -0.6307

Influence Diagnostics:
Row Cook'sDist Leverage DFFITS
1 0.3325 0.3287 -1.0193
2 0.0257 0.0399 -0.2824
3 0.0075 0.0348 -0.1484
4 0.0003 0.0368 0.0282
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5 0.0172 0.0334 -0.2296
6 0.0149 0.0510 -0.2105
7 0.0236 0.0898 0.2645
8 0.0092 0.0828 0.1636
9 0.0004 0.2051 -0.0327
10 0.2604 0.3188 0.8955
11 0.6149 0.3663 1.4194
12 0.0235 0.0455 -0.2682
13 0.0000 0.1110 -0.0024
14 0.0030 0.0635 -0.0937
15 0.0157 0.0352 -0.2185
16 0.0197 0.0556 -0.2431
17 0.0173 0.0441 0.2285
18 0.0119 0.0532 0.1873
19 0.0398 0.0386 0.3594
20 0.0001 0.0362 -0.0138
21 0.0111 0.0379 0.1821
22 0.0273 0.1876 0.2829
23 0.0324 0.2903 -0.3073
24 0.0036 0.1647 -0.1020
25 0.0233 0.0459 0.2669
26 0.0373 0.0484 0.3426
27 0.0186 0.0475 0.2368
28 0.0161 0.0362 -0.2209
29 0.0138 0.0342 -0.2041
30 0.0052 0.0370 -0.1237

95% Confidence:
Row Predicted Regr.5% Regr.95% Pop. 5%
1 940.4779 933.3175 947.6384 926.0817
2 924.6207 922.1274 927.1140 911.8851
3 926.9594 924.6299 929.2889 914.2548
4 926.2529 923.8577 928.6481 913.5361
5 925.2531 922.9717 927.5345 912.5573
6 921.0591 918.2379 923.8804 908.2553
7 932.2024 928.4601 935.9447 919.1646
8 931.2947 927.7000 934.8893 918.2985
9 913.9456 908.2892 919.6019 900.2352
10 904.7887 897.7372 911.8402 890.4463
11 913.4044 905.8453 920.9635 898.8058
12 922.6894 920.0265 925.3523 909.9195
13 917.0599 912.8983 921.2215 903.8956
14 920.1462 916.9999 923.2925 907.2668
15 925.1058 922.7640 927.4476 912.3990
16 919.7149 916.7693 922.6605 906.8831
17 929.5036 926.8807 932.1265 916.7420

10128/04

Pop. 95%
954.8741
937.3563
939.6639
938.9696
937.9489
933.8630
945.2402
944.2909
927.6559
919.1310
928.0030
935.4593
930.2242
933.0256
937.8126
932.5467
942.2652
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18 930.4658 927.5862 933.3453 917.6490 943.2826
19 928.3052 925.8501 930.7602 915.5770 941.0333
20 927.5545 925.1785 929.9306 914.8414 940.2677
21 928.0958 925.6649 930.5267 915.3723 940.8193
22 928.8705 923.4611 934.2798 915.2602 942.4808
23 923.7496 917.0204 930.4787 909.5629 937.9362
24 939.5304 934.4612 944.5995 926.0517 953.0091
25 929.1186 926.4430 931.7941 916.3460 941.8911
26 930.2453 927.4965 932.9942 917.4572 943.0334
27 929.6872 926.9642 932.4102 916.9046 942.4698
28 925.2293 922.8546 927.6041 912.5164 937.9423
29 924.3491 922.0397 926.6585 911.6482 937.0500
30 924.7601 922.3574 927.1628 912.0419 937.4783
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Appendix 2. kt3d Parameter File
Parameters for KT3D
*******************

\file with data
\ columns for X, Y, Z, var, sec var
\ trimming limits
\option: O=grid. l=cross. 2=jackknife
\file with jackknife data
\ columns for X,Y,Z,vr and sec var
\debugging level: 0,1,2,3
\file for debugging output
\file for kriged output

\nx,xmn,xsiz
\ny,ymn,ysiz
\nz,zmn,zsiz
\x,y and z block discretization
\min, max data for kriging
\max per octant (o-> not used)

\maximum search radii
\angles for search ellipsoid
\0=SK,1=OK,2=non-st SK,3=exdrift
\drift: x,y,z,xx,yy,zz,xy,xz,zy
\0, variable; 1, estimate trend
\gridded file with drift/mean
\ column number in gridded file
\nst, nugget effect
\it,cc,ang1,ang2,ang3
\ a_hmax , a_hmin, a_vert

0.0
10.0

o

o

100.0
100.0

0.0
9000.0

3o

13.0
45.2 0.0

9000.0

START OF PARAMETERS:
aug_03_resid.dat
1 2 0 4
-1.0e21 1.0e21
o
xvk.dat
1 2
1
kt3d.dbg
kt3d.out
224 601750.0
307 3566550.0
1 0.5 1.0
1 1 1
o 12
3
15000.0 15000.0 20.0
0.0 0.0 0.0

1 2.302
o 0 0 0 0 0 0 0 0
o
extdrift. dat
4
1
3
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Appendix 3. Well Removal Batch File (krig_min.bat)

copy aug_03_resid.dat input.dat
c:\tools\gslib2\bin\kt3d.exe
calc_var.exe
copy kt3d.out aug_03_resid.out

copy aug_03_resid_rnin_aec7.dat input.dat
c:\tools\gslib2\bin\kt3d.exe
calc_var.exe
copy kt3d.out aug_03_resid_min_aec7.out

copy aug_03_resid_rnin_doel.dat input.dat
c:\tools\gslib2\bin\kt3d.exe
calc_var.exe
copy kt3d.out aug_03_resid_rnin_doel.out

copy aug_03_resid_min_erda9.dat input.dat
c:\tools\gslib2\bin\kt3d.exe
calc_var.exe
copy kt3d.out aU9_03_resid_rnin_erda9.out

copy aU9_03_resid_rnin_h2.dat input.dat
c:\tools\9S1ib2\bin\kt3d.exe
calc_var.exe
copy kt3d.out aug_03_resid_rnin_h2.out

copy aug_03_resid_rnin_h3.dat input.dat
c:\tools\gslib2\bin\kt3d.exe
calc_var.exe
copy kt3d.out aU9_03_resid_rnin_h3.out

copy aug_03_resid_min_h4.dat input.dat
c:\tools\9S1ib2\bin\kt3d.exe
calc_var.exe
copy kt3d.out aug_03_resid_rnin_h4.out

copy aug_03_resid_rnin_h5.dat input.dat
c:\tools\9S1ib2\bin\kt3d.exe
calc_var.exe
copy kt3d.out aU9_03_resid_rnin_h5.out

copy aU9_03_resid_rnin_h6.dat input.dat
c:\tools\9s1ib2\bin\kt3d.exe
calc_var.exe
copy kt3d.out aug_03_resid_rnin_h6.out

copy aug_03_resid_rnin_h7.dat input.dat
c:\tools\gslib2\bin\kt3d.exe
calc_var.exe
copy kt3d.out aU9_03_resid_rnin_h7.out

copy aU9_03_resid_rnin_h9.dat input.dat
c:\tools\9S1ib2\bin\kt3d.exe
calc_var.exe
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copy aug_03_resid_rnin_hlO.dat input.dat
c:\tools\gslib2\bin\kt3d.exe
calc_var.exe
copy kt3d.out aug_03_resid_rnin_hlO.out

copy aug_03_resid_rnin_hll.dat input.dat
c:\tools\gslib2\bin\kt3d.exe
calc_var.exe
copy kt3d.out aug_03_resid_rnin_hll.out

copy aug_03_resid_rnin_h12.dat input.dat
c:\tools\gslib2\bin\kt3d.exe
calc_var.exe
copy kt3d.out aug_03_resid_rnin_h12.out

copy aug_03_resid_rnin_h17.dat input.dat
c:\tools\gslib2\bin\kt3d.exe
calc_var.exe
copy kt3d.out aug_03_resid_rnin_h17.out

copy aug_03_resid_rnin-p17.dat input.dat
c:\tools\gslib2\bin\kt3d.exe
calc_var.exe
copy kt3d.out aug_03_resid_rnin-p17.out

copy aug_03_resid_rnin_w12.dat input.dat
c:\tools\gslib2\bin\kt3d.exe
calc_var.exe
copy kt3d.out aug_03_resid_rnin_w12.out

copy aug_03_resid_rnin_w13.dat input.dat
c:\tools\gslib2\bin\kt3d.exe
calc_var.exe
copy kt3d.out aug_03_resid_rnin_w13.out

copy aug_03_resid_rnin_w19.dat input.dat
c:\tools\gslib2\bin\kt3d.exe
calc_var.exe
copy kt3d.out aug_03_resid_rnin_w19.out

copy aug_03_resid_rnin_w22.dat input.dat
c:\tools\gslib2\bin\kt3d.exe
calc_var.exe
copy kt3d.out aug_03_resid_rnin_w22.out

copy aug_03_resid_rnin_w25.dat input.dat
c:\tools\gslib2\bin\kt3d.exe
calc_var.exe
copy kt3d.out aug_03_resid_rnin_w25.out

copy aug_03_resid_rnin_w26.dat input.dat
c:\tools\gslib2\bin\kt3d.exe
calc_var.exe
copy kt3d.out aug_03_resid_rnin_w26.out
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copy aug_03_resid_rnin_w30.dat input.dat
c:\tools\gslib2\bin\kt3d.exe
calc_var.exe
copy kt3d.out aug_03_resid_rnin_w30.out
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Appendix 4: HeadGrad Program

Description of HeadGrad Program

The HeadGrad program compares observed water levels at wells in the Culebra to levels
calculated by calibrating 100 groundwater models using the ModOow2000 code to match the
observed levels. HeadGrad inputs a set of acceptable triangles formed by combinations of three
wells, along with the hydraulic gradients of these "well triangles." It also inputs a ModOow grid
and the head and flux values for each ofthe 100 calibration mns. HeadGrad organizes the grid
into a set of small triangles, and using the heads, calculates a gradient for each "grid triangle" for
each run. HeadGrad determines which grid triangles are inside each well triangle. For each
well triangle, HeadGrad calculates a flux-weighted gradient of the average gradient over all grid
triangles inside the well triangle. For each run, HeadGrad writes a file listing the average flux­
weighted gradient for each well triangle. HeadGrad also writes a file listing the gradient for
each well triangle calculated from the heads of the model cells nearest the well locations. Both
sets of files are post-processed with the Median_HeadGrad program.

Execution

The HeadGrad program is written in Compaq Visual Fortran Version 6.6.

It was executed on a PC running Microsoft Windows 2000 with an AMD Athlon processor.

HeadGrad is controlled by files and parameters supplied on the command line. The primary
execution ofHeadGrad was run with the following command line parameters:

rhmejOOJuns.txt rhme_100Juns.log dOlr07 0

rhme_100_mns.txt Run command file (described under Input Files), specifying the
100 ModOow models to be examined.

rhme 100 mns.log LOll: file (described under Output Files).
dOlr07 The mn to be examined for verification.

0 The well triangle to be examined in detail for verification. "0"
indicates that no verification files will be written.

The run command file (rhme_100_runs. txt) lists the 100 ModOow mns to be compared, as
follows:
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dOlr02 dOlr04 dOlr07 dOlriO d02r02 d03rOl d03r03 d03r06
d03r07 d03r08 d03r09 d04rOl d04r02 d04r03 d04r04 d04r05
d04r06 d04r07 d04r08 d04rlO d05r03 d05r07 d06r02 d06r03
d06r04 d06r05 d06r06 d06r07 d06rlO d07rOl d07r02 d07r05
d07r06 d07r07 d07r08 d07r09 d07rlO d08rOl d08r02 d08r03
d08r04 d08r05 d08r06 d08r07 d09r02 d09r03 d09r04 d09r05
d09r06 d09r07 d09r08 d09r09 d09rlO dlOr02 dl0r03 dl0r04
dl0r06 dl0r07 dlOr08 dlOr09 dlOrIO dllrOl dllr02 dllr06
dllr07 dllr08 dllr09 dllriO d12rOi d12r02 d12r03 d12r05
d12r06 d12r07 dl2r08 d12r09 d13rOl d13r02 d13r03 d13r05
d13r06 d13r07 d13r08 d13r09 d2lrOl d21r02 d2lr03 d2lr04
d21r05 d2lr06 d2lr07 d2lrIO d22r02 d22r03 d22r04 d22r06
d22r07 d22r08 d22r09 d22rlO

Input and Output

Table 1 describes the input and output files for HeadGrad. HeadGrad outputs severnl files that
are used to verify calculations or to visualize data sets. Only the verification files that are
actually used for verification, as described in the Verification sections below are listed in the
table.

Table 1. HeadGrad input and output files.

INPUT FILES

rhme 100 runs. txt The run command file contains the following infonnation:
Well data file name
Well triangle data file name
Modflow budget (flux) file name template
Modflow head file name template
Primary flux-weighted gradient output file name template
Secondary well triangle gradient output file name template
Directory for verification files
Run identifier dnnmn (one per line for each run)

The file name is fonned from a template by replacing any
occurrence ofthe character "#" with the run identifier.
Lines starting with character "!" are ignored.
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Aug 2003 wells. in The well data file contains the following information for each- -
well: the well number, the well coordinates, and the head value.

Augj003_shapeJhme_1 The well triangle data file has one header row, then it contains
O.out the following information for each well triangle: the well

numbers of the three wells forming the well triangle, its area,
and its gradient (magnitude and flow direction).

IInput!dnnrnnldnnrnn.bud The binary Modflow budget data file for each run contains the
x,y fluxes for the grid cells. The Modflow output format is
described in the Modflow2000 User Guide (Harbaugh, et a!.,
2000).

IInput!dnnrnnlsteady.bin.h The binary Modflow head data file for each run contains the
ead head values for the grid cells. The Modflow output format is

described in the Modflow2000 User Guide (Harbaugh, et a!.,
2000).

OUTPUT FILES

rhme_100_runs. log The log file contains some basic information about the
execution. It shows that each run completed successfully rather
than aborting.

IOutputlWeighted_rhme_ The set of primary output files (one for each run) contains the
dnnrnn.plt well triangle gradient information. After some header lines,

each file contains one line of information for each well triangle.
The information includes: the input well triangle gradient, the
number of grid triangles inside the well triangle, the average
unweighted and flux-weighted gradients over the grid triangles
inside the well triangle. The gradient is always calculated as
magnitude and flow direction, but the corresponding x,y vector
components is output for plotting.

IOutputlNearestJhme_dn The set of secondary output files (one for each run) contains well
nrnn.plt triangle gradient information in the same format as the primary

output files. The information includes the input gradient for the
well triangle and the gradient calculated using the coordinates
and Modflow head data from the grid points nearest the wells
forming the well triangle.

Algorithm and Calculations

The basic algorithm of the HeadGrad program is explained below. This section describes the
calculations performed by the HeadGrad program. The specific routine within the code that
performs an action is listed in square brackets.

Read the run command file name from the command line. Read in the file name templates for all
runs from the run command file.
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(1)

Read the well data (coordinates, head) from the well data file [Read_Wells]. Read the well
triangle data (wells fonning triangle, gradient magnitude and flow direction) from the well
triangle data file [Read_WellTriangles].

Set the grid sizing and coordinates as described by McKenna and Hart (2003) outlining the
transmissivity field calibrations [Set_Grid]. The grid consists of 1OOx 100m2 cells that range
from x = 601,700 to 624,000 (224 columns) and y = 3,566,500 to 3,597,100 (307 rows).

Detennine which grid points are inside any well triangle, because grid triangles are only defmed
if they have at least two vertices inside any well triangle
[Find_GridPoints_Within_WellTriangles]. Set up the grid triangles [Setup_GridTriangles].
Each grid triangle is an isosceles triangle, with a height and base of 2 grid cells (200 m). A
picture of the grid triangle setup is provided in Figure 1.

Detennine which grid point is nearest to each well fonning the well triangle
[Find_Nearest_GridPointJor_Wells].

For each run listed in the run command file, do the steps below.

Read the fluxes from the Modflow budget data file (.bud) for this run [Read_Grid]luxes].
Read the head data from the Modflow head data file (.hed) for this run [Read_Grid_Heads].

Calculate the flux for each grid triangle by summing the absolute value of the flux across the
perimeter of the 3x3 cell square that encloses the grid triangle and dividing by 2
[Calc_GridTriangle_Fluxes]. The division by 2 is necessary as the sum of the absolute fluxes
includes fluxes directed both into and out of the triangle.

Calculate the gradient for each grid triangle [Calc_GridTriangle_Gradients]. The routines that
perfonn the gradient calculation are in file Gradient calculationsj90. They include modified
versions of routines ludcmp, lubksb, and dpythag from Numerical Recipes in C by Press et aL
(1992) and rewritten in FORTRAN.

For each well triangle, compute and output a flux-weighted gradient for all grid triangles inside
the well triangle [Calc_Gradients_Within_WellTriangle]. First, detennine which grid triangles
are inside the well triangle, defined as a grid triangle having two or more vertices inside the well
triangle [Point_Inside_Triangle]. For each grid triangle, multiply the calculated gradient
magnitude and flow direction by the flux to get the flux-weighted values. Calculate the mean
and standard deviation for the flux-weighted and unweighted gradient magnitude and flow
direction over all grid triangles inside the well triangle
[Calc_Gradients_Within_Single_WellTriangle].

The calculations of the unweighted mean and standard deviation are simply calculated with the
standard equations for the mean and variance of a sample:

_ 1 n

x::::;- LXi
n i=l

n
(2)
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where n is the number of gird triangles within well triangle and Xi is either the gradient
magnitude or direction for an individual grid triangle. The weighted calculations are done using
the fluxes within each grid triangle as a weight for the calculated magnitude and orientation
calculated for each grid triangle. The weighted mean is:

and the weighted variance is:

X

n

Lfixi
H

n

Lfi
i~l

(3)

(4)

wherefi is the flux through grid triangle' i ' as demonstrated in Figure I. In these calculations,
direction is the angle measured in degrees clockwise from North. For the mean orientation
calculation, the difference between maximum and minimum flow direction angles should be less
than 180 degrees. For example, the mean of 10 and 3590 is 1800 instead ofO. In the analyses
done in this report, the vast majority of flow direction angles are between 90 and 270 degrees.

It is noted that the HeadGrad program actually calculates variance but labels it standard
deviation.

Note that the input and calculatedflow directions range from -180.. 180, with 0 as north,
with most values around 180 or -180. These flow directions are converted to a 0..360
coordinate system, with 0 as north, for the averaging, and converted backfor output.

For each well triangle, compute and output a gradient using the head data from the grid points
nearest its wells [Calc_Gradients_Nearest_WellTriangle].

Verification of the Flux-Weighted Average Gradient

The verification execution of HeadGrad was done before the final selection of the well
triangles. It was done with the following command parameters:

valid_IOOJuns.txt valid_lOOJuns.log dOlr07 263

Run command file valid_100_runs. txt uses the same well and Modflow input data, but it uses
well triangle data file Augj003_wells.out.
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Output file Weighted_dnnrnn.plt contains the flux-weighted average gradient (and the
unweighted average gradient) for each well triangle for run dnnrnn. To verify the calculation of
the flux-weighted average gradient, it must be shown that:

• the flux of a grid triangle is being calculated correctly,

• the gradient of a triangle is being calculated correctly,

• the grid triangles inside a well triangle are being correctly identified, and

• the flux-weighted average gradient over the grid triangles is being calculated correctly.

The calculations are verified by examining files written for this purpose. Most of the
calculations are simple, but involve a large amount of data. For this reason, most of the
verification files contain data for a single well triangle (263) and a single run (dOh"07). Well
triangle 263 is a very narrow triangle with a small number of grid triangles (57). It corresponds
to well triangle 261 defined in the well triangle file Augj003_shapeJhme_lO.out.

The verification files that are included in this text are modified to focus on the values needed to
verify the calculation. For example, columns ofdata used only for plotting might be deleted.
Descriptive titles might be modified or added. The data are never modified.

Verifying the flux of a grid triangle calculation

The flux for each grid triangle is calculated by summing the absolute value of the flux across the
perimeter ofthe smallest rectangle of grid cells that encloses the grid triangle (in this case, a 3x3
cell square) and dividing the sum by 2 to account for having calculated by inflows and outflows.
Figure I shows a graphical representation of the flux calculation for grid triangle 7279 (the
second triangle on the verification file). File GridTri_Flux_dOlr07_263.out lists the X, Y fluxes
for the grid cells that make up the 57 grid triangles inside well triangle 263, and the calculated
grid triangle flux. The flux calculation was verified by repeating the calculation in Microsoft
Excel on the first two grid triangles. The result is listed in Table 2. The table only lists the
perimeter fluxes that should be summed; the interior fluxes and fluxes outside the box are
excluded. The SUM line lists the Excel-calculated sum ofthe listed flux absolute values for
each column. The flux calculated in Excel is the sum ofthe five column sums divided by 2 and
is listed in the SUM "Flux" column. The flux on the grid triangle title line is the HeadGrad
calculated flux (from the verification file). In each case, the flux value calculated in Excel
matches the value calculated by HeadGrad, verifying that the flux calculation is correct.
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Figure 1. Visual diagram ofthe grid triangle flux

Table 2. Extract of GridTri_Flux_dOlr07_263. out, processed by Excel

X flux to be summed Y flux to be summed Flux

Grid Triangle 7278 (179,121); (177,122); (179,123)

Row Col 120 Col 123 Col 121 i Col122 Col 123

6.32841B-07

SUM 236.192E-9' 87.200E-9' 354.478E-9i 319.279E-91268.533E-9

Grid Triangle 7279 (177,124); (177,122); (179.123)

6.32841E-07

5.21549B-07

.... :58~7~~.~.~~J:J::.:=20:~02E.=?:.;18:5: 9 ~.2~=?~..1.5.4:?8:~~!~.~~:.~.~.~.~=?j- _

-60.882E-9; ; ,-19 .134E-9 ,
--"'",.·.···.·.·.·.·.·.·.·.·.-----··.·········.-.--.t- ,.; ------- ------_ 1--,.....•.....................----- --.., , ,." "." "."."."."."."." _._-----;.--_ __._--_ _-_ 1------
-59.977E-9 i i 1 -23. 849E-9 i 133. 368E-91 114. 345E-9! 94. 249E-9

Row
176
177

178
179

SUM

Col 121 Col 124 Co1122. Col 123 Col 124

179.587E-9! 63.085E-9 i 319.279E-9 i 268.533E-9! 212.613E-9 5.21549E-07

Verifying the gradient calculation

The gradients for the grid triangles are calculated with the algorithm that was used to calculate
the gradients for the well triangles that are input in the well triangle data file. To verify the
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HeadGrad implementation of this algoritlun, the gradients for the well triangles were calculated
in HeadGrad and compared to the input gradients. The comparison is found in file
WellTri_Grad.out. The magnitudes and flow directions on the well triangle data file have six
significant digits, so the verification file lists exactly six digits. Table 3 lists the verification file
output for well triangles that differed in either the magnitude or flow direction. (The output that
differs is flagged with "***,, in the validation file.) The input and calculated magnitudes match
exactly for all well triangles. In 8 of the 1660 well triangles, the input and calculated flow
directions differ by one in the 6th digit. In these eight cases, the difference is always 5E-4 or 5E­
5, indicating that when roundoff is considered, the difference is actually in the 7th or later
significant digit. This verifies that the gradient calculation is correct.

Table 3. Extract of WellTri Grad.out

Tri#
201
275
457
519
628
650
731

1517

wells
1 19 24
2 6 26
4 5 14
4 12 19
5 14 22
6 7 22
6 13 23

14 15 22
MAX Diff

input_magn
6.62171E-04
5.84913E-03
1.79228E-02
7.99311E-03
3.04847E-03
3.23688E-03
3.30002E-03
2.06598E-03

calc_magn
6.62171E-04
5.84913E-03
1. 79228E-02
7.99311E-03
3.04847E-03
3.23688E-03
3.3000211-03
2.06598E-03

dif_rnagn
-3.11E-10
-3.88E-09
5.84E-09
5.90E-10

-3.42E-09
1.20E-09

-2.60E-09
-4.48E-09
4.80E-08

input_fdir
8.53443E+01
1. 49171E+02
5.92217E+01

-1.59967E+02
5.89846E+01

-1.75803E+02
2.88745E+01
7.19122E+01

calc_fdir
8.53442E+01
1.49172E+02
5.92216E+01

-1.59966E+02
5.89845E+01

-1. 75802E+02
2.88744E+01
7.19121E+01

dif_fdir
5.34E-05

-5.02E-04
5.25E-05

-5.01E-04
5.22E-05

-5.02E-04
5.05E-05
5.00E-05
5.02E-04
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Verifying whether a grid triangle is inside a well triangle

By definition, a grid triangle is inside a well triangle if two or more of the grid triangle vertices
are inside the well triangle. To verify the selection ofthe appropriate grid triangles that are
inside the well triangles, HeadGrad was executed using a single-run command file
(run_dOlr07.txt) to write a validation file describing the 222 grid triangles that are inside well
triangle 244. (Well triangle 244 corresponds to well triangle 246 defined in the well triangle file
Aug_2003_shapeJhme_10.out.) Note that well triangle 263 used above to verify fluxes is not
used here as it is difficult to determine whether or not grid triangles fit within the long and
narrow well triangle 263. File GridTriangles_244.plt is input into the Tecplot plotting program
to create the plot of the well triangle 244 and the 222 grid triangles identified by HeadGrad as
being inside the well triangle. The resulting plot is shown in Figure 2. By examining this
figure, it can be seen that all grid triangles drawn have at least two vertices inside the well
triangle. Further, none ofthe missing grid triangles along the perimeter of the well triangle
would have two vertices in the well triangle. This verifies that HeadGrad is correctly
identifying the grid triangles that are inside the well triangle.

3581000 I-

,f 1\ ,f U
3580000 I-

>

(\I ,1,1 f\ 1\ \7
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" c.:7Vf\ \/\/A
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I

,I J f\ f\/X
,f I\f
c::7 7\ 0X
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I I I

613000 614000 615000
X

616000 617000

Figure 2. Grid triangles inside well triangle 244 (GridTriangles_244.plt)
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Verifying the flux-weighted average gradient calculation

The calculation of the unweighted and the flux-weighted average gradient is verified by
examining file GridTri_Grad_dOlr07j63.plt, which contains the values for ron dOlr07 for the
57 grid triangles inside well triangle 263. This file is contained within the
/Monitoring_04/Heterogeneity/HeadGrad_a.zip jile. Table 4 is an extract of this file. The flux­
weighted magnitude is the flux multiplied by the magnitude; the flux-weighted flow direction is
the flux multiplied by the flow direction. The weighted values have been verified with
Microsoft Excel. The last row in the table, the "average" row lists the total number of grid
triangles used in the calcualtions, the average flux, the unweighted average gradient magnitude
and flow direction, and the flux-weighted average magnitude and flow direction. Each entry in
the rows ofthe "Flux-weighted Magnitude" column (Table 4) is the product of the "Flux" and
"Magnitude" entries in the same row. The value in the final row is the flux weighted average
magnitude. This value is, following Equation 3, the sum ofthe entries in rows of the Flux­
weighted Magnitude column divided by the sum of the entries in the "Flux" column. The sum of
the entries in the "Flux" column is not shown in Table 4. The bottom row of the "Flux-weighted
Flow dir" column is the flux-weighted orientation and it is calculated the same way as the flux
weighted magnitude using the sum of the "Flow dir" column. The verification file was input into
Microsoft Excel, and the flux weighted values and the averages was recalculated and found to
be identical to the values in the file. This verifies that the flux-weighted average gradient is
being calculated correctly.

Table 4. Extract of GridTri Grad dOlr07 263.out- -

Grid Flux Magnitude Flowdir Flux-weighted Flux-weighted
Triangle (0 ..360) Magnitude Flow dir (0 ..360)

7278 1 6.328413E-07 1.889983E-03 200.877 1.196059E-09 1.271233E-04
7279 2 5.215488E-07 1.643617E-03 192.383 8.572265E-10 1.003373E-04
7280 3 4.156517E-07 1.622406E-03 195.738 6.743559E-10 8.135889E-05
7614 4 8.862974E-07 2.873802E-03 204.145 2.547044E-09 1.809335E-04
7615 5 8.273217E-07 2.833331E-03 203.472 2.344076E-09 1.683372E-04

10009 56 3.039102E-05 9.856566E-04 107.161 2.99551lE-08 3.256745E-03
10010 57 3.520128E-05 7.340560E-04 103.892 2.583971E-08 3.657125E-03

Average 57 1.147523E-05 1. 491925E-03 179.630 5.118185E-04 144.502

The unweighted and flux-weighted magnitude and flow direction appear in the output file
Weighted_dOlr07.plt for well triangle 263. This file is contained within the
/Monitoring_04/Heterogeneity/HeadGrad_a.zipjile. An extract ofthis file is shown in Table 5.
The unweighted and flux-weighted magnitude and flow direction exactly match the averages
output in file GridTrCGrad_dOlr07j63.out. Note that the flow direction is 0° to 360° in Table
4, and -180° to 180° in Table 5. Thus, if the average flow direction was greater than 180°, it
would be converted to -180°.
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Table 5. Extract of Weighted_dOlr07.plt

WellTri nlnsTri avgMagn,_Fdir180 avgWtMagn,_Fdir180 avgFlux
263 57 1.491925E-03 179.630 5.118185E-04 144.502 1.147523E-05

Verification of Well Triangle Gradient Using Nearest Model Cells

Output file Nearest_dnnrnn.plt contains the well gradient calculated using the coordinates and
the head values ofthe grid cells nearest the three wells forming each well triangle for run dnnrnn.
To verify the calculation of this well gradient, it must be shown that:

• HeadGrad selects the nearest grid cell to each well, and

• the triangle gradient is being calculated correctly.

To verify that HeadGrad is selecting the nearest grid cell for each well, file Nearest_XY.plt is
examined. This file lists the (x,y) position of each well and its nearest grid cell and the difference
between the two. Because each grid cell is lOx 10m2 square, the difference between the well
position and its nearest grid cell must be less than ± SO in both the x and y. This is true for all 30
wells. The gradient calculation was verified above. This verifies that the well gradients in
output file Nearest_dnnrnn.plt are correct.

Reference:

Harbaugh, A. W., E.R. Banta, M.C. Hill and M.G. McDonald, 2000, MODFLOW-2000, the U.S.
Geological Survey Modular Ground-Water Model - User Guide to Modularization Concepts and
the Ground-Water Flow Process, U.S. Geological Survey.
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Appendix 5. Median_HeadGrad Program

Description of Median_HeadGrad Program

The Median_HeadGrad program reads data from the files written by the HeadGrad program,
and yields statistics, including the mean, median, and quantiles for the flux-weighted averages
for each well triangle over all runs. It also calculates statistics for the unweighted averages.
Statistics are also calculated for the well gradients calculated using the Modflow data at the grid
cells nearest the well.

Execution

The Median_HeadGrad program is written in Compaq Visual Fortran (Version 6.6).

It was executed on a PC running Microsoft Windows 2000 with an AMD Athlon processor.

Median_HeadGrad is controlled by files and parameters supplied on the command line. The
primary execution of Median_HeadGrad was run with the following command line parameters:

rhme_lOOJuns.txt Median_UnwtJhme.p/t Median_WtJhme.plt 50

Median_HeadGrad was executed a second time with the following command line:

rhme_lOOJuns.txt Median_NearJhme.plt NEAR 5 0

rhme 100 runs. txt Run command file (described under Input Files), specifying
the 100 output files to be examined.

__ H'!.t!!£!:'!_C!l'llIIL':~l1}'!.:pJt _____Ihe()ll1:I>lltJil(l_\yith~t<lti~!il::~f()~!I1(llln\y(light(l4<l\'lJ!:<lg(;)~_, _
Median_NearJhme.plt The output file with statistics for the well gradients calculated

using Modflow data from the nearest grid points.
H':'t!i£!:'!_f!!__':~!'!_':'l:'IL____II1(;)()ll1:I>ll! __!'1I(;)_\Yi!h__~!<l1:isticsf()rth(lf1\l)(=:\yeigI1t(l4_<l\'(;)~<lg(;)~:

NEAR This parameter indicates that Median_HeadGrad should read
the data from the NearestJhme_dnnrnn.plt files output by
HeadGrad. No file will be written with statistics for the flux­
weighted averages.

5 Output quantiles at 5% and 95%.
o ._Ihe_\yellt.rillllgl(lt()1Je(l)(llIIliIl1l4illcl(;)t<ti!_f()~.\'(ll"i!'1l::ati()Il: _

"0" indicates that no verification file will be written.
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Input and Output

Table 6 describes the input and output files for Median_HeadGrad.

Table 6. Median_HeadGrad input and output files

INPUT FILES

valid 100 runs. txt The run command file is the same file used for the HeadGrad
execution. Only the HeadGrad output file name templates and
the run identifiers are used; the HeadGrad input file names are
ignored.

/Output/Weighted rhme dn These HeadGrad output files (one for each run) contain the- -
nrnn.plt unweighted and flux-weighted average gradient for each well

triangle. These files are input for the primary execution of
Median HeadGrad.

/Output/NearestJhme_dnnr These HeadGrad output files (one for each run) contain the well
nn.plt triangle gradient calculated using the ModRow data from the

grid points nearest the wells forming the well triangle. These
files are input for the second execution ofMedian HeadGrad.

OUTPUT FILES (in /Output)

Median_UnwtJhme.plt This output file contains the statistics for the unweighted average
well triangle gradient. The statistics are the mean, median, 5%
quantile, and 95% quantile of the magnitude and flow direction
over all runs for each acceotable well triangle.

Median_ WtJhme.plt This output file contains the statistics for the flux-weighted
average well triangle gradient.

Median_NearJhme.plt This output file, generated by the second execution of
Median_HeadGrad, contains the statistics for the well triangle
gradient calculated using the ModRow data from the nearest grid
points.

Algorithm and Calculations

The Median_HeadGrad program calculates statistics for magnitude and flow direction over 100
runs for each well triangle. The statistics are mean, median, 5% quantile, and 95% quantile. The
mean calculation is self-evident. The quantile statistics are calculated by sorting the 100 values,
then selecting value 51 for the median, value 5 for the 5% quantile, and value 96 for the 95%
quantile.

Note that the inputflow directions range from -180..180, with 0 as north, with most
values around 180 or -180. These flow directions are converted to a 0..360 coordinate
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system, with 0 as north, for all statistic calculations and are output in the 0..360
coordinate system.

Verification ofMedian_HeadGrad

Median_HeadGrad is verified using the verification data from HeadGrad. The verification
execution ofMedian_HeadGrad was nul with the following command line parameters:

valid_lOOJuns.txt Median_Unweighted.plt Median_Weighted.plt 5 263

The calculations performed by Median_HeadGrad are simple, but they involve a large amount
of data spread over 100 data files. For this reason, Median_HeadGrad writes a verification file,
Medianj63.out, with the input magnitude and flow direction (0..360) for well triangle 263 over
all 100 nulS, and the calculated statistics. The verification file contains the 100 values for the
unweighted averages, followed by the values for the flux-weighted averages. The verification
file was input to Microsoft Excel. The unweighted average gradient magnitudes were sorted,
and the appropriate quantile data were selected from the sorted data, and compared to the
calculated statistics on the verification file. The mean was calculated and compared to the
calculated mean. This process was repeated for the unweighted average gradient flow direction
and the flux-weighted average gradient magnitude and flow direction. In each case, the Excel­
calculated statistics matched the Median_HeadGrad calculations, verifying that the statistics
are being calculated correctly.

It was also verified that the correct magnitudes and flow directions from the appropriate input
file were written to the verification file (for nul dOlr07 only). (lfthe input flow direction is
negative, the verification file lists the flow direction as 360 plus the input flow direction.) The
calculated statistics for well triangle 263 are written correctly to output files
Median_Unweightedplt and Median_Weighted.plt.
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Appendix 6. Test of the RHME program

The program RHME is used to determine the amount of error in the actual estimates of the
orientation and magnitude of the gradient from as obtained from a local gradient estimator when
there is error in the head measurements. Results can be obtained for any ratio ofRHME desired.
This program is contained in the file RHME.cpp and makes use of the supporting source codes
triangle.cpp and nrutill.cpp and also uses the header files triangle.h and nrutill.h.

This program is tested by assigning the RHME value to be zero and generating 5000 realizations
of the measured heads. To accomplish this test, the global variable ERR_TO_DROP on line 30
of the RHME.cpp is set to equal 0.000. The test criteria are:

1) The output file must contain the requested number of lines, one for each sampling
realization. For this test problem, the output file must contain 5000 lines.

2) The estimated magnitude ofthe gradient must equal that of the true magnitude. For this
test problem, the true magnitude of the gradient is 0.001.

3) The estimated orientation of the gradient must equal that of the true orientation. For this
test problem, the true orientation ofthe gradient is 180 degrees (due south).

The output file name is specified on line 32 ofRHME.cpp as mserr_test.out for this test problem.
The code is compiled and run from a DOS window by typing debuglRHME.exe at the command
prompt.

The results of the test problem are contained in the output file. There are five columns in the
file: the error ratio, the actual gradient, the estimated gradient, the actual orientation and the
estimated orientation. All three of the test criteria are met: there are 5000 lines in the output file,
each line correctly identifies 0.001 as the true gradient and each line correctly identifies 180 as
the true orientation.
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Appendix 7. Testing the main code for evaluating the effects
of estimator shape and gradient orientation.

The code main is used to estimate the magnitude and orientation of the hydraulic gradient from a
series of three head measurements. This code is used with synthetically generated data to test the
ability of three wells to identify the true gradient in the presence of measurement error. This
code reads in an input file that has the coordinates of the three wells on the first line in Xl, Yl,
X2, Y2, X3, Y3 order and then has a series ofhead measurements in hi, h2, h3 order on each line.
Each set ofhead measurements is designed to produce a different orientation in the true gradient.
In the calculations done for this report, these orientations are for roughly every 15 degrees
around the 3600 circle (24 gradient orientations).

The main code adds a random number drawn from a zero mean Gaussian distribution with the
appropriate variance for the specified measurement error to each of the head measurements for a
different orientation and does this "NUM MSMTS" times for each orientation ofthe gradient.
Here, NUM_MSMTS is set to 2000. These calculations can be done for any level ofRHME as
defined with the ERR_TO_DROP variable in the code.

The output of the code is a text file with five columns:
I) The value ofRHME (will be constant for all lines in the output file)
2) The true value of the gradient magnitude calculated from the input values with no

measurement error.
3) The estimated value of the gradient magnitude calculated from the input values with

simulated measurement error.
4) The true value of the gradient orientation calculated from the input values with no

measurement error.
5) The estimated value of the gradient orientation calculated from the input values with

simulated measurement error.

Five test criteria are set for the main code:
1) The code must be able to read in a previously defined text formatted input file,
2) The code must produce the correct number of output records as defined by the variable

NUM_MSMTS for each orientation of the gradient.
3) The code must produce results for the correct number of gradient orientations in the input

file,
4) For a specified value of ERR_TO_DROP equal to zero, the code must produce the

correct magnitude of the gradient for all output.
5) For a specified value of ERR_TO_DROP equal to zero, the code must produce the

correct magnitude of the gradient for all output.

All input and output files for the test of the main code, as well as the source code files are in the
Monitoring_04 \Test_Problems\shape_test\ subdirectory. The test problem is run using the input
file for the 41-degree triangle, 4i cases. txt. This input file is reproduced in Figure 3. The top
line of this files gives the X Y coordinates for each of the wells used to calculate the gradient.
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The next 24 lines specify the head measurements to create 24 different orientations of the
gradient at roughly IS-degree intervals.

0.00 0.00
10.0707
10.0941
10.0996
10.0999
10.099
10.0969
10.0949
10.0911
10.0861
10.075
10.0509
9.99372
9.92929
9.90591
9.90044
9.90005
9.90089
9.90241
9.90489
9.90854
9.91393
9.92447
9.94708
9.99686

200.00 0.00 100.00
10.0707 9.92929
10.0339 9.96613
10.0094 9.99059
9.99607 10.0039
9.98591 10.0141
9.97513 10.0249
9.96835 10.0316
9.95885 10.0412
9.9491 10.0509
9.93387 10.0661
9.91393 10.0861
9.9002 10.0998
9.92929 10.0707
9.96613 10.0339
9.99059 10.0094
10.0031 9.99686
10.0133 9.98669
10.0218 9.97819
10.0309 9.9691
10.0404 9.95957
10.0509 9.9491
10.0655 9.93446
10.0849 9.91515
10.1 9.90005

87.30

Figure 3. Input file for the main test problem.

The test problem is run by typing debug\main at the DOS command prompt in the
Monitoring_04 \Test_Problems\shape_test\ subdirectory. The output file is mserr41_000.out.
The values ofNUM_MSMSTS and ERR_TO_DROP are set to 2000 and 0.000 respectively.

Examination of the output file shows that the code did produce 2000 output lines for each ofthe
24 different orientations. For all output lines, the estimated magnitude and orientation match the
true magnitude and orientation exactly. The test run met all the criteria ofthe test problem and
therefore the code is satisfactory for use in these calculations.
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Appendix 8. Test Problem for Well Removal Gradient
Estimation

The software to determine the local gradient given three sets ofwells consists ofthree C++
source codes and two header (*.h) files. The two header files nrutill.h and triangle.h, as well as
the source files triangle.cpp and nrutill.c. remain fixed for all applications in this work. The
final file, estimate_Remove cpp, is similar to other files used in this analysis package but has
been edited and recompiled specifically for this well removal application. All of these source
and header files are compiled into a single executable using the Microsoft Visual c++ (version
6.0) compiler on a 1.7GHz Pentium 4 PC running the Microsoft Windows 2000 operating
system. The final compiled executable, estimate_Remove, is referred to as the "removal
program" in the discussion below.

A simple test problem with six wells is developed to test the ability of the removal program to
determine the magnitude and orientation of the hydraulic gradient from a limited number of
wells. This test problem is run from the IMonitoring_04 \Test_ProblemsIRemoval_test
subdirectory contained on the CD-ROM accompanying this report. The problem is run twice,
once with six wells and once with five wells. The five well case is created by removing one of
the original six wells.

Four criteria are selected to evaluate the removal program to correctly determine that local
gradients have been established. These criteria must be met for both the six and five well cases:

I) The program must return the correct number oflocal gradient estimates from the input
number of wells. This number is calculated as:

m!
mCn=---­

n!(m-n)!
(5)

where m equals the total number ofwells in the monitoring network, six for this example
and n equals the number ofwells in the estimator, three.

2) The calculated areas of each triangle must match those calculated using the X and Y
coordinates of each point defining the triangle in the matrix equation for the area of a
triangle:

Area =±0.5[:: ;: ~l] =±O.5(x,y, +Y,X, + Y3 X, - Y,x3 - Y,x, - X'Y3) (6)

x3 Y3

3) Given that the test problem represents a homogeneous aquifer and the head
measurements are error-free, the removal program must return the exact estimates ofthe
magnitude of the underlying tme hydraulic gradient
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4) Given that the test problem represents a homogeneous aquifer and the head
measurements are error-free, the removal program must return the exact estimates of the
orientation of the hydraulic gradient.

The test problem is created by defining a regional planar gradient with the flow direction to the
SE, or a direction of 135 degrees clockwise from north and a magnitude of 0.021213. Heads for
any point in X, Y space can be detennined by:

H(x,y) =Ax+ By + C (7)

Where coefficient values of A = - 0.Dl5, B = 0.Dl5 and C = 1000 create the specified orientation
and magnitude of the gradient. These coefficients are related to the orientation and the
magnitude ofthe gradient by:

magnitude = JA' + B 2

orinetation = arctan( ~)

The C coefficient can be thought of as an intercept on the head axis and the head across the
middle of the domain perpendicular to the flow direction is equal to the value of C. A contour
plot ofthe head field is given in Figure 4.

(8)

(9)
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Figure 4. Contour map of the regional head field used in this test problem. The units of head
are arbitrary.

Six well locations are chosen within the domain (Figure 5) and the head is calculated at each
location using Equation 7 with the correct coefficients. These six locations serve as the head
monitoring locations. The well locations along with the head values and the well ill's are shown
in Table 7. Table 7 contains all of the information needed as input to the estimator. This
information is copied into the text file test6wells. in for use in this test problem.

Table 7. !D's, locations and head values at the six wells in the test problem. Units of X, Y and
head are arbitrary.

Well In X-Coordinate V-Coordinate Head

1 190 90 998.50
2 790 110 989.80
3 200 490 1004.35
4 800 510 995.65
5 210 890 1010.20
6 810 910 1001.50
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The local gradient estimations are calculated by typing debug\estimate.exe at the DOS command
prompt from within the \Monitoring 04\Test ProblemslRemove test subdirectory.

- - -

1000

900 • •
800

700

600

500 • •
400

300

200

100 • •
0

0 100 200 300 400 500 600 700 800 900 1000

Figure 5. Locations of the six wells used in the test problem. The well located at (200,490) is
removed for the five well test problem.

The five well case test problem is created by removing well number 3 at location (200,490) from
the six well configuration. The five well case input file is: test5wells.in. The two test cases are
run in a single call to the model. This call is "debuglestimate_Remove" from a DOS command
prompt in the \Monitoring 04\Test Problems\Remove test\ subdirectory.- - -

Results ofthe calculations made by the removal program are given in Tables 8 and 9. The
information in these two tables comes directly from the output files of the removal program:
test6wells.out and test5wells.out. Each ofthe criteria used to determine the accuracy of this
program are evaluated using the results in Table 8. The results of this evaluation are also
contained in the remove_test.xls Excel spreadsheet file in the
\Monitoring_04ITest_ProblemslRemove_test subdirectory.

1) For the six well configuration, the removal program identified a total of 20 triangles.
Solution of(S) using m=6 and n=3 results in 20 triangles and therefore this criterion is
met exactly. For the five well configuration, the removal program identified a total of 10
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triangles. Solution of (5) using m=5 and n=3 results in 10 triangles and therefore this
criterion is met exactly.

2) The calculated areas of each triangle are shown in the 4th column from the left in Tables 8
and 9. The areas of the triangles were also calculated using (6) and the X and Y
coordinates ofthe triangles as identified by the removal program. These calculations are
documented in theremove_test.xIs spreadsheet. The areas calculated by the removal
program and (6) are an identical match. By design, in the six well test, the combinations
of wells 2, 4 and 6 and 1, 3 and 5 fonn two different straight lines and therefore the area
enclosed by the "triangle" made up from either set of these three points is zero. The
removal program correctly identified both of these zero area triangles.

3) The magnitude of the regional gradient, 0.212132, is correctly identified for every
triangle in both cases by the removal program with the exception of the two zero area
triangles. These two sets ofthree points do not make a valid triangle for estimation and
these results are disregarded.

4) The orientation of the regional gradient, 135 degrees clockwise from the north, is
correctly identified for every triangle in both cases by the removal program with the
exception ofthe two zero area triangles. These two sets of three points do not make a
valid triangle for estimation and are disregarded.

Table 8. Results of the local gradient estimator for the six well test problem.

WelllD 1 WelllD 2 Well ID 3 Area Ma2nitude Orientation
I 2 3 119900 0.0212132 135
1 2 4 119900 0.0212132 135
I 2 5 239800 0.0212132 135
1 2 6 239800 0.0212132 135
1 3 4 119900 0.0212132 135
1 3 5 0 5.31255 -88.7256
I 3 6 119900 0.0212132 135
1 4 5 239800 0.0212132 135
1 4 6 119900 0.0212132 135
1 5 6 239800 0.0212132 135
2 3 4 119900 0.0212132 135
2 3 5 119900 0.0212132 135
2 3 6 239800 0.0212132 135
2 4 5 119900 0.0212132 135
2 4 6 0 1.25536 -89.2352
2 5 6 239800 0.0212132 135
3 4 5 119900 0.0212132 135
3 4 6 119900 0.0212132 135
3 5 6 119900 0.0212132 135
4 5 6 119900 0.0212132 135
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Table 9. Results of the local gradient estimator for the five well test problem.

Well ID 1 Well ID 2 Well ID 3 Area Mamitude Orientation
I 2 4 119900 0.0212132 135
I 2 5 239800 0.0212132 135
I 2 6 239800 0.0212132 135
1 4 5 239800 0.0212132 135
1 4 6 119900 0.0212132 135
I 5 6 239800 0.0212132 135
2 4 5 119900 0.0212132 135
2 4 6 0 1.25536 -89.2352
2 5 6 239800 0.0212132 135
4 5 6 119900 0.0212132 135

In summary, the removal program produces results on the test problem that are correct for all
four of test criteria identified prior to testing.
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Appendix 9. Test Problem for Well Addition Gradient
Estimation

The software to detennine the local gradient given three sets of wells consists ofthree c++
source codes and two header (*.h) files. The two header files nrutill.h and triangle.h, as well as
the source files triangle.cpp and nrutill.c remain fixed for all applications in this work. The
final file, locat cpp, is similar to other files used in this analysis package but has been edited and
recompiled specifically for this well addition application. All of these source and header files are
compiled into a single executable using the Microsoft Visual C++ (version 6.0) compiler on a
1.7GHz Pentium 4 PC running the Microsoft Windows 2000 operating system. The final
compiled executable, local, is referred to as the "addition program" in the discussion below.

A simple test problem with six well measurements and then an additional 100 estimated or
"average" heads on a 10 x 10 grid is developed to test the ability of the addition program to
detennine the magnitude and orientation of the hydraulic gradient from a limited number of
wells. This test problem is run the lMonitoring_04ITest_Problems\add_test subdirectory
contained on the CD-ROM accompanying this report. The problem is run twice, once with six
wells and once with five wells.

Four criteria are selected to evaluate the addition program to correctly detennine the total
number three-point estimators created by the addition of a single well:

1) The program must return the correct number oflocal gradient estimates from the input
number ofwells. This number is calculated as:

m!
mCn=---­

n!(m-n)!
(10)

where m equals the total number of wells in the monitoring network, six for this example
and n equals the number of head measurement locations in the estimator, three.

2) The addition program must determine the total number of estimators created for each of
the 100 different wells on the 10 x 10 grid. This criterion is met if the output file has 100
lines.

3) The program must be able to correctly interpret a -999 as a missing data value. For any
grid location with a -999 for the average head estimate, the program must return -999 for
the number of estimators created by add a well at that location

4) The output file must contain the correct coordinates for the locations of the added well.

The test problem is created by defining a regional planar gradient with the flow direction to the
SE, or a direction of 135 degrees clockwise from north and a magnitude of 0.021213. Heads for
any point X,Y space can be detennined by:

H(x,y)=Ax+By+C
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Where coefficient values of A = - 0.015, B = 0.015 and C = 1000 create the specified orientation
and magnitude of the gradient. These coefficients are related to the orientation and the
magnitude ofthe gradient by:

magnitude =~A 2 + B 2

.. (B)ormetatlOn =arctan A

(12)

(13)

The C coefficient can be thought of as an intercept on the head axis and the head across the
middle ofthe domain perpendicular to the flow direction is equal to the value of C. A contour
plot of the head field is given in Figure 6.
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Figure 6. Contour map of the regional head field used in this test problem. The units ofhead
are arbitrary.
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Six well locations are chosen within the domain (Figure 7) and the head is calculated at each
location using Equation 11 with the correct coefficients. These six locations serve as the head
monitoring locations and are given in the add_test.xls file. The well locations along with the
head values and the well ID's are shown in Table 10. The additional input file for this test
problem contains values of average head as calculated on a grid. These values are also
calculated using (11) and are contained in the add test.xls file. The information in Table lOis
copied into the text file test6wells.in for use in this test problem. The heads on the grid points
are copied into the file: headJJrid_data. txt. A five line header, corresponding to the header used
by the Surfer (version 8.0) software is added to the top of this text file. The 5-line header
contains a keyword (DSAA), the number of X and Y cells in the grid, the minimum and
maximum X coordinates, the minimum and maximum Y coordinates, a min and max head value.
The keyword and the range ofhead values are not used by the addition program.

Table 10. ID's, locations and head values at the six wells in the test problem. Units of X, Y and
head are arbitrary.

WelllD X-Coordinate Y-Coordinate Head

1 190 90 998.50
2 790 110 989.80
3 200 490 1004.35
4 800 510 995.65
5 210 890 1010.20
6 810 910 1001.50

The local gradient estimations are calculated by typing debugllocat.exe at the DOS command
prompt from within the IMonitoring_04ITest_Problemsladd_test subdirectory. The program
prompts the user for the name of the triangle output file, triangles.out, was used in the test
problem and the name ofthe file containing the heads on the grid, headJJrid_data.txt. An
additional output file containing one line with information on the regional gradient is also
written. This file is test6wells.out. The information in this output file is not germane to the
problem and is not used in any further analyses.
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Figure 7. Locations of the six wells used in the test problem (diamonds) and the grid of
calculated heads used to estimate the number ofnew triangles from the addition of a single new
well at the center of each cell.

Results of the calculations made by the estimator program are contained in the triangles.out file.
This file has contains 100 lines and each line comprises the X and Y coordinates for the added
well and the total number of triangles given the 6 original wells and the added well. Each ofthe
criteria used to test this program are evaluated using the results in triangles.out.

1) For all points on the grid with a valid, not -999, head value, the addition program returns
35 triangles. Solution of (1 0) using m=7 and n=3 yields 35 triangles and therefore this
criterion is met exactly.

2) There are 100 lines in the triangles. out file. Therefore, the addition program calculated
the total number of estimators once and only once for each well added to the
configuration.

3) Four locations in the input file headJ5rid_data.txt were assigned -999 as the head value.
These four values define missing data in the NW region of the grid. The output file,
triangles.out, shows the number of estimators for each of these locations to be -999. The
program is able to read a missing data flag and return that flag for the locations with
missing data.
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4) Visual inspection ofthe triangles. out file and comparison with the X and Y coordinates
ofthe grid in the add_test-xIs file show that the addition program returns the correct
coordinates for each well added to the monitoring configuration.

In summary, the estimator program produces results on the test problem that are correct for all
four of test criteria identified prior to testing.
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Appendix 10. Test Problem for Spatial Sensitivity
Coefficients

The software to determine the spatial sensitivity coefficient as the Spearman rank correlation
coefficient at every point in a model domain given a set ofrealizations of a spatially variable
property is called vlsap. The vlsap program reads in a model output with one entry for every
stochastic run of the model and a series ofinput files where each input is the realization of
property values that created each single entry in the output file. vlsap then calculates the
Spearman rank correlation coefficient between all outputs and all inputs for each spatial cell in
the model.

The test problem for vlsap was built in an Excel spreadsheet: sens_test....Problem.xls. This
spreadsheet contains both the input for the test problem and the results from running the test
problem. The test problem consists of a "domain" that is 1 cell wide and 100 cells long. In each
cell is an integer between I and 100. There are a total of 100 realizations of these values for the
domain. In the sens_test....Problem.xls file, columns B through CW contain the different
realizations. The test problem "model output" is the same as the cell number, I through 100, and
these are stored in column A of the sens_testyroblem.xls file. For any cell, the correlation
between the model output and the values in the cell across all realizations is calculated and
shown in column CY in the spreadsheet. For example, the correlation of cell I with the model
output is calculated by comparing the values in column A with those in row 3. The resulting
correlation is -1.00. Because the values in the output and in the cells are from I to 100, they not
only represent input and outputs measured in some arbitrary units, but they are also the direct
ranks of the input and output data and therefore the correlation coefficient calculated in column
CY is the Spearman rank correlation coefficient.

The test problem for the vlsap program was run on the Albuquerque linux cluster: lylinl02 in the
directory Ihlwipplsensitivitylsteady-statelQAdltestl. The vlsap executable and source code are
located in Ihlwipplsensitivitylsteady-stateIQadisource. The values in the sens_test....Problem.xls
file were written to a text file sens_test""problem. txt and a bash shell was written to extract the
output and the inputs in the different realizations into separate text files. The bash shell used for
this extraction is parseTestProblem.sh and a listing of this shell is included at the end ofthis
appendix. The results of running this shell are 100 files for each realization and each file
contains the 100 values across the cells for that realization. These files are named test. #.map
where the # is the realization number and the inputs to the vlsap program. The output, column A
from the spreadsheet, is stored in the text file test. res and is the other input into vlsap.

The vlsap program is run using the bash shell: runTestProblem.sh. vlsap is executed and inputs
and outputs are defined with a single command line statement as captured in the
runTestProblem.sh file. The listing of the runTestProblem.sh file is given at the end of this
appendix.

The single criterion for determining whether or not vlsap performs correctly is to compare the
Spearman rank correlation coefficients calculated in column CY ofthe spreadsheet with those
calculated by vlsap. The test problem was specifically designed to cover the entire range of
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correlation coefficients from -1.0 to + 1.0 depending on the cell in the model. This range of
correlation coefficients was achieved by altering the order ofthe input values across the
realizations. The vlsap output needs to match the results in column CY to the second decimal as
this is all the resolution that would be used in mapping sensitivity within the Culebra.

The Spearman rank correlation coefficients calculated by vlsap are output to test.map.out. This
file is then copied into column DI of the sens_testyroblem.xls file and compared to the Excel
results in column CY. The comparison results are shown in column DK. None ofthe 100
correlation coefficients calculated by vlsap deviates by more that 0.0005 from the Excel results
indicating that vlsap has met the requirements for this test problem. The results of comparing
the Excel correlation coefficients to those calculated by vlsap are shown in Figure 8.
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Figure 8. Comparison ofSpearman rank correlation coefficients calculated by vlsap and Excel
across all 100 cells in the test problem.
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ParseTestProblem.sh shell file

#!/bin/bash -x

N~l

COL~2

while « $N <~ 100 »
da

tail -n 100 sens_test--prablem.txt I awk "c=$COL {print \$c )" >
test. $N . map

COL=$ (COL+l»
N=$ «N+l) I

done

./runTestProblem.sh

RunTestProblem.sh shell file

#!/bin/bash

EXEC~/h/wipp/sensitivitY/steady-stateIQAd/saurce/vlsap

$EXEC -p test -x 1 -y 100 -r test.res -f 100 -a test.aut.map
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